Integral of (2x-3)^5 dx
The solution
Detail solution
-
There are multiple ways to do this integral.
Method #1
-
Let u=2x−3.
Then let du=2dx and substitute 2du:
∫2u5du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u5du=2∫u5du
-
The integral of un is n+1un+1 when n=−1:
∫u5du=6u6
So, the result is: 12u6
Now substitute u back in:
12(2x−3)6
Method #2
-
Rewrite the integrand:
(2x−3)5=32x5−240x4+720x3−1080x2+810x−243
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫32x5dx=32∫x5dx
-
The integral of xn is n+1xn+1 when n=−1:
∫x5dx=6x6
So, the result is: 316x6
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−240x4)dx=−240∫x4dx
-
The integral of xn is n+1xn+1 when n=−1:
∫x4dx=5x5
So, the result is: −48x5
-
The integral of a constant times a function is the constant times the integral of the function:
∫720x3dx=720∫x3dx
-
The integral of xn is n+1xn+1 when n=−1:
∫x3dx=4x4
So, the result is: 180x4
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−1080x2)dx=−1080∫x2dx
-
The integral of xn is n+1xn+1 when n=−1:
∫x2dx=3x3
So, the result is: −360x3
-
The integral of a constant times a function is the constant times the integral of the function:
∫810xdx=810∫xdx
-
The integral of xn is n+1xn+1 when n=−1:
∫xdx=2x2
So, the result is: 405x2
-
The integral of a constant is the constant times the variable of integration:
∫(−243)dx=−243x
The result is: 316x6−48x5+180x4−360x3+405x2−243x
-
Now simplify:
12(2x−3)6
-
Add the constant of integration:
12(2x−3)6+constant
The answer is:
12(2x−3)6+constant
The answer (Indefinite)
[src]
/
| 6
| 5 (2*x - 3)
| (2*x - 3) dx = C + ----------
| 12
/
∫(2x−3)5dx=C+12(2x−3)6
The graph
−3182
=
−3182
Use the examples entering the upper and lower limits of integration.