Integral of sin(x)tan^3(x) dx
The solution
The answer (Indefinite)
[src]
/
|
| 3 3*log(1 + sin(x)) 3*log(-1 + sin(x)) sin(x)
| sin(x)*tan (x) dx = C - ----------------- + ------------------ - -------------- + sin(x)
| 4 4 2
/ -2 + 2*sin (x)
$$\int \sin{\left(x \right)} \tan^{3}{\left(x \right)}\, dx = C + \frac{3 \log{\left(\sin{\left(x \right)} - 1 \right)}}{4} - \frac{3 \log{\left(\sin{\left(x \right)} + 1 \right)}}{4} + \sin{\left(x \right)} - \frac{\sin{\left(x \right)}}{2 \sin^{2}{\left(x \right)} - 2}$$
3*log(1 + sin(1)) 3*log(1 - sin(1)) sin(1)
- ----------------- + ----------------- - -------------- + sin(1)
4 4 2
-2 + 2*sin (1)
$$\frac{3 \log{\left(1 - \sin{\left(1 \right)} \right)}}{4} - \frac{3 \log{\left(\sin{\left(1 \right)} + 1 \right)}}{4} + \sin{\left(1 \right)} - \frac{\sin{\left(1 \right)}}{-2 + 2 \sin^{2}{\left(1 \right)}}$$
=
3*log(1 + sin(1)) 3*log(1 - sin(1)) sin(1)
- ----------------- + ----------------- - -------------- + sin(1)
4 4 2
-2 + 2*sin (1)
$$\frac{3 \log{\left(1 - \sin{\left(1 \right)} \right)}}{4} - \frac{3 \log{\left(\sin{\left(1 \right)} + 1 \right)}}{4} + \sin{\left(1 \right)} - \frac{\sin{\left(1 \right)}}{-2 + 2 \sin^{2}{\left(1 \right)}}$$
-3*log(1 + sin(1))/4 + 3*log(1 - sin(1))/4 - sin(1)/(-2 + 2*sin(1)^2) + sin(1)
Use the examples entering the upper and lower limits of integration.