Mister Exam

Other calculators


sin8x*cos3x

Integral of sin8x*cos3x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |  sin(8*x)*cos(3*x) dx
 |                      
/                       
0                       
01sin(8x)cos(3x)dx\int\limits_{0}^{1} \sin{\left(8 x \right)} \cos{\left(3 x \right)}\, dx
Detail solution
  1. Rewrite the integrand:

    sin(8x)cos(3x)=512sin7(x)cos4(x)+384sin7(x)cos2(x)+768sin5(x)cos4(x)576sin5(x)cos2(x)320sin3(x)cos4(x)+240sin3(x)cos2(x)+32sin(x)cos4(x)24sin(x)cos2(x)\sin{\left(8 x \right)} \cos{\left(3 x \right)} = - 512 \sin^{7}{\left(x \right)} \cos^{4}{\left(x \right)} + 384 \sin^{7}{\left(x \right)} \cos^{2}{\left(x \right)} + 768 \sin^{5}{\left(x \right)} \cos^{4}{\left(x \right)} - 576 \sin^{5}{\left(x \right)} \cos^{2}{\left(x \right)} - 320 \sin^{3}{\left(x \right)} \cos^{4}{\left(x \right)} + 240 \sin^{3}{\left(x \right)} \cos^{2}{\left(x \right)} + 32 \sin{\left(x \right)} \cos^{4}{\left(x \right)} - 24 \sin{\left(x \right)} \cos^{2}{\left(x \right)}

  2. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      (512sin7(x)cos4(x))dx=512sin7(x)cos4(x)dx\int \left(- 512 \sin^{7}{\left(x \right)} \cos^{4}{\left(x \right)}\right)\, dx = - 512 \int \sin^{7}{\left(x \right)} \cos^{4}{\left(x \right)}\, dx

      1. Rewrite the integrand:

        sin7(x)cos4(x)=(1cos2(x))3sin(x)cos4(x)\sin^{7}{\left(x \right)} \cos^{4}{\left(x \right)} = \left(1 - \cos^{2}{\left(x \right)}\right)^{3} \sin{\left(x \right)} \cos^{4}{\left(x \right)}

      2. There are multiple ways to do this integral.

        Method #1

        1. Let u=cos(x)u = \cos{\left(x \right)}.

          Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute dudu:

          (u103u8+3u6u4)du\int \left(u^{10} - 3 u^{8} + 3 u^{6} - u^{4}\right)\, du

          1. Integrate term-by-term:

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u10du=u1111\int u^{10}\, du = \frac{u^{11}}{11}

            1. The integral of a constant times a function is the constant times the integral of the function:

              (3u8)du=3u8du\int \left(- 3 u^{8}\right)\, du = - 3 \int u^{8}\, du

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                u8du=u99\int u^{8}\, du = \frac{u^{9}}{9}

              So, the result is: u93- \frac{u^{9}}{3}

            1. The integral of a constant times a function is the constant times the integral of the function:

              3u6du=3u6du\int 3 u^{6}\, du = 3 \int u^{6}\, du

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                u6du=u77\int u^{6}\, du = \frac{u^{7}}{7}

              So, the result is: 3u77\frac{3 u^{7}}{7}

            1. The integral of a constant times a function is the constant times the integral of the function:

              (u4)du=u4du\int \left(- u^{4}\right)\, du = - \int u^{4}\, du

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

              So, the result is: u55- \frac{u^{5}}{5}

            The result is: u1111u93+3u77u55\frac{u^{11}}{11} - \frac{u^{9}}{3} + \frac{3 u^{7}}{7} - \frac{u^{5}}{5}

          Now substitute uu back in:

          cos11(x)11cos9(x)3+3cos7(x)7cos5(x)5\frac{\cos^{11}{\left(x \right)}}{11} - \frac{\cos^{9}{\left(x \right)}}{3} + \frac{3 \cos^{7}{\left(x \right)}}{7} - \frac{\cos^{5}{\left(x \right)}}{5}

        Method #2

        1. Rewrite the integrand:

          (1cos2(x))3sin(x)cos4(x)=sin(x)cos10(x)+3sin(x)cos8(x)3sin(x)cos6(x)+sin(x)cos4(x)\left(1 - \cos^{2}{\left(x \right)}\right)^{3} \sin{\left(x \right)} \cos^{4}{\left(x \right)} = - \sin{\left(x \right)} \cos^{10}{\left(x \right)} + 3 \sin{\left(x \right)} \cos^{8}{\left(x \right)} - 3 \sin{\left(x \right)} \cos^{6}{\left(x \right)} + \sin{\left(x \right)} \cos^{4}{\left(x \right)}

        2. Integrate term-by-term:

          1. The integral of a constant times a function is the constant times the integral of the function:

            (sin(x)cos10(x))dx=sin(x)cos10(x)dx\int \left(- \sin{\left(x \right)} \cos^{10}{\left(x \right)}\right)\, dx = - \int \sin{\left(x \right)} \cos^{10}{\left(x \right)}\, dx

            1. Let u=cos(x)u = \cos{\left(x \right)}.

              Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

              u10du\int u^{10}\, du

              1. The integral of a constant times a function is the constant times the integral of the function:

                (u10)du=u10du\int \left(- u^{10}\right)\, du = - \int u^{10}\, du

                1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                  u10du=u1111\int u^{10}\, du = \frac{u^{11}}{11}

                So, the result is: u1111- \frac{u^{11}}{11}

              Now substitute uu back in:

              cos11(x)11- \frac{\cos^{11}{\left(x \right)}}{11}

            So, the result is: cos11(x)11\frac{\cos^{11}{\left(x \right)}}{11}

          1. The integral of a constant times a function is the constant times the integral of the function:

            3sin(x)cos8(x)dx=3sin(x)cos8(x)dx\int 3 \sin{\left(x \right)} \cos^{8}{\left(x \right)}\, dx = 3 \int \sin{\left(x \right)} \cos^{8}{\left(x \right)}\, dx

            1. Let u=cos(x)u = \cos{\left(x \right)}.

              Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

              u8du\int u^{8}\, du

              1. The integral of a constant times a function is the constant times the integral of the function:

                (u8)du=u8du\int \left(- u^{8}\right)\, du = - \int u^{8}\, du

                1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                  u8du=u99\int u^{8}\, du = \frac{u^{9}}{9}

                So, the result is: u99- \frac{u^{9}}{9}

              Now substitute uu back in:

              cos9(x)9- \frac{\cos^{9}{\left(x \right)}}{9}

            So, the result is: cos9(x)3- \frac{\cos^{9}{\left(x \right)}}{3}

          1. The integral of a constant times a function is the constant times the integral of the function:

            (3sin(x)cos6(x))dx=3sin(x)cos6(x)dx\int \left(- 3 \sin{\left(x \right)} \cos^{6}{\left(x \right)}\right)\, dx = - 3 \int \sin{\left(x \right)} \cos^{6}{\left(x \right)}\, dx

            1. Let u=cos(x)u = \cos{\left(x \right)}.

              Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

              u6du\int u^{6}\, du

              1. The integral of a constant times a function is the constant times the integral of the function:

                (u6)du=u6du\int \left(- u^{6}\right)\, du = - \int u^{6}\, du

                1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                  u6du=u77\int u^{6}\, du = \frac{u^{7}}{7}

                So, the result is: u77- \frac{u^{7}}{7}

              Now substitute uu back in:

              cos7(x)7- \frac{\cos^{7}{\left(x \right)}}{7}

            So, the result is: 3cos7(x)7\frac{3 \cos^{7}{\left(x \right)}}{7}

          1. Let u=cos(x)u = \cos{\left(x \right)}.

            Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

            u4du\int u^{4}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              (u4)du=u4du\int \left(- u^{4}\right)\, du = - \int u^{4}\, du

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

              So, the result is: u55- \frac{u^{5}}{5}

            Now substitute uu back in:

            cos5(x)5- \frac{\cos^{5}{\left(x \right)}}{5}

          The result is: cos11(x)11cos9(x)3+3cos7(x)7cos5(x)5\frac{\cos^{11}{\left(x \right)}}{11} - \frac{\cos^{9}{\left(x \right)}}{3} + \frac{3 \cos^{7}{\left(x \right)}}{7} - \frac{\cos^{5}{\left(x \right)}}{5}

        Method #3

        1. Rewrite the integrand:

          (1cos2(x))3sin(x)cos4(x)=sin(x)cos10(x)+3sin(x)cos8(x)3sin(x)cos6(x)+sin(x)cos4(x)\left(1 - \cos^{2}{\left(x \right)}\right)^{3} \sin{\left(x \right)} \cos^{4}{\left(x \right)} = - \sin{\left(x \right)} \cos^{10}{\left(x \right)} + 3 \sin{\left(x \right)} \cos^{8}{\left(x \right)} - 3 \sin{\left(x \right)} \cos^{6}{\left(x \right)} + \sin{\left(x \right)} \cos^{4}{\left(x \right)}

        2. Integrate term-by-term:

          1. The integral of a constant times a function is the constant times the integral of the function:

            (sin(x)cos10(x))dx=sin(x)cos10(x)dx\int \left(- \sin{\left(x \right)} \cos^{10}{\left(x \right)}\right)\, dx = - \int \sin{\left(x \right)} \cos^{10}{\left(x \right)}\, dx

            1. Let u=cos(x)u = \cos{\left(x \right)}.

              Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

              u10du\int u^{10}\, du

              1. The integral of a constant times a function is the constant times the integral of the function:

                (u10)du=u10du\int \left(- u^{10}\right)\, du = - \int u^{10}\, du

                1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                  u10du=u1111\int u^{10}\, du = \frac{u^{11}}{11}

                So, the result is: u1111- \frac{u^{11}}{11}

              Now substitute uu back in:

              cos11(x)11- \frac{\cos^{11}{\left(x \right)}}{11}

            So, the result is: cos11(x)11\frac{\cos^{11}{\left(x \right)}}{11}

          1. The integral of a constant times a function is the constant times the integral of the function:

            3sin(x)cos8(x)dx=3sin(x)cos8(x)dx\int 3 \sin{\left(x \right)} \cos^{8}{\left(x \right)}\, dx = 3 \int \sin{\left(x \right)} \cos^{8}{\left(x \right)}\, dx

            1. Let u=cos(x)u = \cos{\left(x \right)}.

              Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

              u8du\int u^{8}\, du

              1. The integral of a constant times a function is the constant times the integral of the function:

                (u8)du=u8du\int \left(- u^{8}\right)\, du = - \int u^{8}\, du

                1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                  u8du=u99\int u^{8}\, du = \frac{u^{9}}{9}

                So, the result is: u99- \frac{u^{9}}{9}

              Now substitute uu back in:

              cos9(x)9- \frac{\cos^{9}{\left(x \right)}}{9}

            So, the result is: cos9(x)3- \frac{\cos^{9}{\left(x \right)}}{3}

          1. The integral of a constant times a function is the constant times the integral of the function:

            (3sin(x)cos6(x))dx=3sin(x)cos6(x)dx\int \left(- 3 \sin{\left(x \right)} \cos^{6}{\left(x \right)}\right)\, dx = - 3 \int \sin{\left(x \right)} \cos^{6}{\left(x \right)}\, dx

            1. Let u=cos(x)u = \cos{\left(x \right)}.

              Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

              u6du\int u^{6}\, du

              1. The integral of a constant times a function is the constant times the integral of the function:

                (u6)du=u6du\int \left(- u^{6}\right)\, du = - \int u^{6}\, du

                1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                  u6du=u77\int u^{6}\, du = \frac{u^{7}}{7}

                So, the result is: u77- \frac{u^{7}}{7}

              Now substitute uu back in:

              cos7(x)7- \frac{\cos^{7}{\left(x \right)}}{7}

            So, the result is: 3cos7(x)7\frac{3 \cos^{7}{\left(x \right)}}{7}

          1. Let u=cos(x)u = \cos{\left(x \right)}.

            Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

            u4du\int u^{4}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              (u4)du=u4du\int \left(- u^{4}\right)\, du = - \int u^{4}\, du

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

              So, the result is: u55- \frac{u^{5}}{5}

            Now substitute uu back in:

            cos5(x)5- \frac{\cos^{5}{\left(x \right)}}{5}

          The result is: cos11(x)11cos9(x)3+3cos7(x)7cos5(x)5\frac{\cos^{11}{\left(x \right)}}{11} - \frac{\cos^{9}{\left(x \right)}}{3} + \frac{3 \cos^{7}{\left(x \right)}}{7} - \frac{\cos^{5}{\left(x \right)}}{5}

      So, the result is: 512cos11(x)11+512cos9(x)31536cos7(x)7+512cos5(x)5- \frac{512 \cos^{11}{\left(x \right)}}{11} + \frac{512 \cos^{9}{\left(x \right)}}{3} - \frac{1536 \cos^{7}{\left(x \right)}}{7} + \frac{512 \cos^{5}{\left(x \right)}}{5}

    1. The integral of a constant times a function is the constant times the integral of the function:

      384sin7(x)cos2(x)dx=384sin7(x)cos2(x)dx\int 384 \sin^{7}{\left(x \right)} \cos^{2}{\left(x \right)}\, dx = 384 \int \sin^{7}{\left(x \right)} \cos^{2}{\left(x \right)}\, dx

      1. Rewrite the integrand:

        sin7(x)cos2(x)=(1cos2(x))3sin(x)cos2(x)\sin^{7}{\left(x \right)} \cos^{2}{\left(x \right)} = \left(1 - \cos^{2}{\left(x \right)}\right)^{3} \sin{\left(x \right)} \cos^{2}{\left(x \right)}

      2. Let u=cos(x)u = \cos{\left(x \right)}.

        Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute dudu:

        (u83u6+3u4u2)du\int \left(u^{8} - 3 u^{6} + 3 u^{4} - u^{2}\right)\, du

        1. Integrate term-by-term:

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u8du=u99\int u^{8}\, du = \frac{u^{9}}{9}

          1. The integral of a constant times a function is the constant times the integral of the function:

            (3u6)du=3u6du\int \left(- 3 u^{6}\right)\, du = - 3 \int u^{6}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u6du=u77\int u^{6}\, du = \frac{u^{7}}{7}

            So, the result is: 3u77- \frac{3 u^{7}}{7}

          1. The integral of a constant times a function is the constant times the integral of the function:

            3u4du=3u4du\int 3 u^{4}\, du = 3 \int u^{4}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

            So, the result is: 3u55\frac{3 u^{5}}{5}

          1. The integral of a constant times a function is the constant times the integral of the function:

            (u2)du=u2du\int \left(- u^{2}\right)\, du = - \int u^{2}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

            So, the result is: u33- \frac{u^{3}}{3}

          The result is: u993u77+3u55u33\frac{u^{9}}{9} - \frac{3 u^{7}}{7} + \frac{3 u^{5}}{5} - \frac{u^{3}}{3}

        Now substitute uu back in:

        cos9(x)93cos7(x)7+3cos5(x)5cos3(x)3\frac{\cos^{9}{\left(x \right)}}{9} - \frac{3 \cos^{7}{\left(x \right)}}{7} + \frac{3 \cos^{5}{\left(x \right)}}{5} - \frac{\cos^{3}{\left(x \right)}}{3}

      So, the result is: 128cos9(x)31152cos7(x)7+1152cos5(x)5128cos3(x)\frac{128 \cos^{9}{\left(x \right)}}{3} - \frac{1152 \cos^{7}{\left(x \right)}}{7} + \frac{1152 \cos^{5}{\left(x \right)}}{5} - 128 \cos^{3}{\left(x \right)}

    1. The integral of a constant times a function is the constant times the integral of the function:

      768sin5(x)cos4(x)dx=768sin5(x)cos4(x)dx\int 768 \sin^{5}{\left(x \right)} \cos^{4}{\left(x \right)}\, dx = 768 \int \sin^{5}{\left(x \right)} \cos^{4}{\left(x \right)}\, dx

      1. Rewrite the integrand:

        sin5(x)cos4(x)=(1cos2(x))2sin(x)cos4(x)\sin^{5}{\left(x \right)} \cos^{4}{\left(x \right)} = \left(1 - \cos^{2}{\left(x \right)}\right)^{2} \sin{\left(x \right)} \cos^{4}{\left(x \right)}

      2. Let u=cos(x)u = \cos{\left(x \right)}.

        Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute dudu:

        (u8+2u6u4)du\int \left(- u^{8} + 2 u^{6} - u^{4}\right)\, du

        1. Integrate term-by-term:

          1. The integral of a constant times a function is the constant times the integral of the function:

            (u8)du=u8du\int \left(- u^{8}\right)\, du = - \int u^{8}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u8du=u99\int u^{8}\, du = \frac{u^{9}}{9}

            So, the result is: u99- \frac{u^{9}}{9}

          1. The integral of a constant times a function is the constant times the integral of the function:

            2u6du=2u6du\int 2 u^{6}\, du = 2 \int u^{6}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u6du=u77\int u^{6}\, du = \frac{u^{7}}{7}

            So, the result is: 2u77\frac{2 u^{7}}{7}

          1. The integral of a constant times a function is the constant times the integral of the function:

            (u4)du=u4du\int \left(- u^{4}\right)\, du = - \int u^{4}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

            So, the result is: u55- \frac{u^{5}}{5}

          The result is: u99+2u77u55- \frac{u^{9}}{9} + \frac{2 u^{7}}{7} - \frac{u^{5}}{5}

        Now substitute uu back in:

        cos9(x)9+2cos7(x)7cos5(x)5- \frac{\cos^{9}{\left(x \right)}}{9} + \frac{2 \cos^{7}{\left(x \right)}}{7} - \frac{\cos^{5}{\left(x \right)}}{5}

      So, the result is: 256cos9(x)3+1536cos7(x)7768cos5(x)5- \frac{256 \cos^{9}{\left(x \right)}}{3} + \frac{1536 \cos^{7}{\left(x \right)}}{7} - \frac{768 \cos^{5}{\left(x \right)}}{5}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (576sin5(x)cos2(x))dx=576sin5(x)cos2(x)dx\int \left(- 576 \sin^{5}{\left(x \right)} \cos^{2}{\left(x \right)}\right)\, dx = - 576 \int \sin^{5}{\left(x \right)} \cos^{2}{\left(x \right)}\, dx

      1. Rewrite the integrand:

        sin5(x)cos2(x)=(1cos2(x))2sin(x)cos2(x)\sin^{5}{\left(x \right)} \cos^{2}{\left(x \right)} = \left(1 - \cos^{2}{\left(x \right)}\right)^{2} \sin{\left(x \right)} \cos^{2}{\left(x \right)}

      2. Let u=cos(x)u = \cos{\left(x \right)}.

        Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute dudu:

        (u6+2u4u2)du\int \left(- u^{6} + 2 u^{4} - u^{2}\right)\, du

        1. Integrate term-by-term:

          1. The integral of a constant times a function is the constant times the integral of the function:

            (u6)du=u6du\int \left(- u^{6}\right)\, du = - \int u^{6}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u6du=u77\int u^{6}\, du = \frac{u^{7}}{7}

            So, the result is: u77- \frac{u^{7}}{7}

          1. The integral of a constant times a function is the constant times the integral of the function:

            2u4du=2u4du\int 2 u^{4}\, du = 2 \int u^{4}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

            So, the result is: 2u55\frac{2 u^{5}}{5}

          1. The integral of a constant times a function is the constant times the integral of the function:

            (u2)du=u2du\int \left(- u^{2}\right)\, du = - \int u^{2}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

            So, the result is: u33- \frac{u^{3}}{3}

          The result is: u77+2u55u33- \frac{u^{7}}{7} + \frac{2 u^{5}}{5} - \frac{u^{3}}{3}

        Now substitute uu back in:

        cos7(x)7+2cos5(x)5cos3(x)3- \frac{\cos^{7}{\left(x \right)}}{7} + \frac{2 \cos^{5}{\left(x \right)}}{5} - \frac{\cos^{3}{\left(x \right)}}{3}

      So, the result is: 576cos7(x)71152cos5(x)5+192cos3(x)\frac{576 \cos^{7}{\left(x \right)}}{7} - \frac{1152 \cos^{5}{\left(x \right)}}{5} + 192 \cos^{3}{\left(x \right)}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (320sin3(x)cos4(x))dx=320sin3(x)cos4(x)dx\int \left(- 320 \sin^{3}{\left(x \right)} \cos^{4}{\left(x \right)}\right)\, dx = - 320 \int \sin^{3}{\left(x \right)} \cos^{4}{\left(x \right)}\, dx

      1. Rewrite the integrand:

        sin3(x)cos4(x)=(1cos2(x))sin(x)cos4(x)\sin^{3}{\left(x \right)} \cos^{4}{\left(x \right)} = \left(1 - \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)} \cos^{4}{\left(x \right)}

      2. Let u=cos(x)u = \cos{\left(x \right)}.

        Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute dudu:

        (u6u4)du\int \left(u^{6} - u^{4}\right)\, du

        1. Integrate term-by-term:

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u6du=u77\int u^{6}\, du = \frac{u^{7}}{7}

          1. The integral of a constant times a function is the constant times the integral of the function:

            (u4)du=u4du\int \left(- u^{4}\right)\, du = - \int u^{4}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

            So, the result is: u55- \frac{u^{5}}{5}

          The result is: u77u55\frac{u^{7}}{7} - \frac{u^{5}}{5}

        Now substitute uu back in:

        cos7(x)7cos5(x)5\frac{\cos^{7}{\left(x \right)}}{7} - \frac{\cos^{5}{\left(x \right)}}{5}

      So, the result is: 320cos7(x)7+64cos5(x)- \frac{320 \cos^{7}{\left(x \right)}}{7} + 64 \cos^{5}{\left(x \right)}

    1. The integral of a constant times a function is the constant times the integral of the function:

      240sin3(x)cos2(x)dx=240sin3(x)cos2(x)dx\int 240 \sin^{3}{\left(x \right)} \cos^{2}{\left(x \right)}\, dx = 240 \int \sin^{3}{\left(x \right)} \cos^{2}{\left(x \right)}\, dx

      1. Rewrite the integrand:

        sin3(x)cos2(x)=(1cos2(x))sin(x)cos2(x)\sin^{3}{\left(x \right)} \cos^{2}{\left(x \right)} = \left(1 - \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)} \cos^{2}{\left(x \right)}

      2. Let u=cos(x)u = \cos{\left(x \right)}.

        Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute dudu:

        (u4u2)du\int \left(u^{4} - u^{2}\right)\, du

        1. Integrate term-by-term:

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

          1. The integral of a constant times a function is the constant times the integral of the function:

            (u2)du=u2du\int \left(- u^{2}\right)\, du = - \int u^{2}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

            So, the result is: u33- \frac{u^{3}}{3}

          The result is: u55u33\frac{u^{5}}{5} - \frac{u^{3}}{3}

        Now substitute uu back in:

        cos5(x)5cos3(x)3\frac{\cos^{5}{\left(x \right)}}{5} - \frac{\cos^{3}{\left(x \right)}}{3}

      So, the result is: 48cos5(x)80cos3(x)48 \cos^{5}{\left(x \right)} - 80 \cos^{3}{\left(x \right)}

    1. The integral of a constant times a function is the constant times the integral of the function:

      32sin(x)cos4(x)dx=32sin(x)cos4(x)dx\int 32 \sin{\left(x \right)} \cos^{4}{\left(x \right)}\, dx = 32 \int \sin{\left(x \right)} \cos^{4}{\left(x \right)}\, dx

      1. Let u=cos(x)u = \cos{\left(x \right)}.

        Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

        u4du\int u^{4}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          (u4)du=u4du\int \left(- u^{4}\right)\, du = - \int u^{4}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

          So, the result is: u55- \frac{u^{5}}{5}

        Now substitute uu back in:

        cos5(x)5- \frac{\cos^{5}{\left(x \right)}}{5}

      So, the result is: 32cos5(x)5- \frac{32 \cos^{5}{\left(x \right)}}{5}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (24sin(x)cos2(x))dx=24sin(x)cos2(x)dx\int \left(- 24 \sin{\left(x \right)} \cos^{2}{\left(x \right)}\right)\, dx = - 24 \int \sin{\left(x \right)} \cos^{2}{\left(x \right)}\, dx

      1. Let u=cos(x)u = \cos{\left(x \right)}.

        Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

        u2du\int u^{2}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          (u2)du=u2du\int \left(- u^{2}\right)\, du = - \int u^{2}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

          So, the result is: u33- \frac{u^{3}}{3}

        Now substitute uu back in:

        cos3(x)3- \frac{\cos^{3}{\left(x \right)}}{3}

      So, the result is: 8cos3(x)8 \cos^{3}{\left(x \right)}

    The result is: 512cos11(x)11+128cos9(x)128cos7(x)+272cos5(x)58cos3(x)- \frac{512 \cos^{11}{\left(x \right)}}{11} + 128 \cos^{9}{\left(x \right)} - 128 \cos^{7}{\left(x \right)} + \frac{272 \cos^{5}{\left(x \right)}}{5} - 8 \cos^{3}{\left(x \right)}

  3. Now simplify:

    8(320cos8(x)+880cos6(x)880cos4(x)+374cos2(x)55)cos3(x)55\frac{8 \left(- 320 \cos^{8}{\left(x \right)} + 880 \cos^{6}{\left(x \right)} - 880 \cos^{4}{\left(x \right)} + 374 \cos^{2}{\left(x \right)} - 55\right) \cos^{3}{\left(x \right)}}{55}

  4. Add the constant of integration:

    8(320cos8(x)+880cos6(x)880cos4(x)+374cos2(x)55)cos3(x)55+constant\frac{8 \left(- 320 \cos^{8}{\left(x \right)} + 880 \cos^{6}{\left(x \right)} - 880 \cos^{4}{\left(x \right)} + 374 \cos^{2}{\left(x \right)} - 55\right) \cos^{3}{\left(x \right)}}{55}+ \mathrm{constant}


The answer is:

8(320cos8(x)+880cos6(x)880cos4(x)+374cos2(x)55)cos3(x)55+constant\frac{8 \left(- 320 \cos^{8}{\left(x \right)} + 880 \cos^{6}{\left(x \right)} - 880 \cos^{4}{\left(x \right)} + 374 \cos^{2}{\left(x \right)} - 55\right) \cos^{3}{\left(x \right)}}{55}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                                          11             5   
 |                                   7           3             9      512*cos  (x)   272*cos (x)
 | sin(8*x)*cos(3*x) dx = C - 128*cos (x) - 8*cos (x) + 128*cos (x) - ------------ + -----------
 |                                                                         11             5     
/                                                                                               
cos(11x)22cos(5x)10-{{\cos \left(11\,x\right)}\over{22}}-{{\cos \left(5\,x\right) }\over{10}}
The answer [src]
8    8*cos(3)*cos(8)   3*sin(3)*sin(8)
-- - --------------- - ---------------
55          55                55      
8555cos11+11cos5110{{8}\over{55}}-{{5\,\cos 11+11\,\cos 5}\over{110}}
=
=
8    8*cos(3)*cos(8)   3*sin(3)*sin(8)
-- - --------------- - ---------------
55          55                55      
8cos(3)cos(8)553sin(3)sin(8)55+855- \frac{8 \cos{\left(3 \right)} \cos{\left(8 \right)}}{55} - \frac{3 \sin{\left(3 \right)} \sin{\left(8 \right)}}{55} + \frac{8}{55}
Numerical answer [src]
0.116887158817857
0.116887158817857
The graph
Integral of sin8x*cos3x dx

    Use the examples entering the upper and lower limits of integration.