Mister Exam

Other calculators

Integral of (sinxsin2x(sin^6x+sin^4x+sin^2x)sqrt(2sin^4x+3sin^2x+6))/(1-cos2x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                                                                                
  /                                                                                
 |                                                                                 
 |                                                   ___________________________   
 |                  /   6         4         2   \   /      4           2           
 |  sin(x)*sin(2*x)*\sin (x) + sin (x) + sin (x)/*\/  2*sin (x) + 3*sin (x) + 6    
 |  ---------------------------------------------------------------------------- dx
 |                                  1 - cos(2*x)                                   
 |                                                                                 
/                                                                                  
0                                                                                  
$$\int\limits_{0}^{1} \frac{\sqrt{2 \sin^{4}{\left(x \right)} + 3 \sin^{2}{\left(x \right)} + 6} \left(\sin^{6}{\left(x \right)} + \sin^{4}{\left(x \right)} + \sin^{2}{\left(x \right)}\right) \sin{\left(x \right)} \sin{\left(2 x \right)}}{- \cos{\left(2 x \right)} + 1}\, dx$$
Integral(sin(x)*sin(2*x)*(sin(x)^6 + sin(x)^4 + sin(x)^2)*sqrt(2*sin(x)^4 + 3*sin(x)^2 + 6)/(1 - cos(2*x)), (x, 0, 1))

    Use the examples entering the upper and lower limits of integration.