Integral of sin(kx) dx
The solution
The answer (Indefinite)
[src]
/ //-cos(k*x) \
| ||---------- for k != 0|
| sin(k*x) dx = C + |< k |
| || |
/ \\ 0 otherwise /
$$-{{\cos \left(k\,x\right)}\over{k}}$$
/1 cos(k*l)
|- - -------- for And(k > -oo, k < oo, k != 0)
$$\begin{cases} - \frac{\cos{\left(k l \right)}}{k} + \frac{1}{k} & \text{for}\: k > -\infty \wedge k < \infty \wedge k \neq 0 \\0 & \text{otherwise} \end{cases}$$
=
/1 cos(k*l)
|- - -------- for And(k > -oo, k < oo, k != 0)
$$\begin{cases} - \frac{\cos{\left(k l \right)}}{k} + \frac{1}{k} & \text{for}\: k > -\infty \wedge k < \infty \wedge k \neq 0 \\0 & \text{otherwise} \end{cases}$$
Use the examples entering the upper and lower limits of integration.