Mister Exam

Integral of sin(kx) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  l            
  /            
 |             
 |  sin(k*x) dx
 |             
/              
0              
$$\int\limits_{0}^{l} \sin{\left(k x \right)}\, dx$$
The answer (Indefinite) [src]
  /                  //-cos(k*x)             \
 |                   ||----------  for k != 0|
 | sin(k*x) dx = C + |<    k                 |
 |                   ||                      |
/                    \\    0       otherwise /
$$-{{\cos \left(k\,x\right)}\over{k}}$$
The answer [src]
/1   cos(k*l)                                  
|- - --------  for And(k > -oo, k < oo, k != 0)

            
$$\begin{cases} - \frac{\cos{\left(k l \right)}}{k} + \frac{1}{k} & \text{for}\: k > -\infty \wedge k < \infty \wedge k \neq 0 \\0 & \text{otherwise} \end{cases}$$
=
=
/1   cos(k*l)                                  
|- - --------  for And(k > -oo, k < oo, k != 0)

            
$$\begin{cases} - \frac{\cos{\left(k l \right)}}{k} + \frac{1}{k} & \text{for}\: k > -\infty \wedge k < \infty \wedge k \neq 0 \\0 & \text{otherwise} \end{cases}$$

    Use the examples entering the upper and lower limits of integration.