Mister Exam

Other calculators

Integral of (sin(x+2y)/3(x+y^2))dy dy

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  0                         
  /                         
 |                          
 |  sin(x + 2*y) /     2\   
 |  ------------*\x + y / dy
 |       3                  
 |                          
/                           
-1                          
$$\int\limits_{-1}^{0} \frac{\sin{\left(x + 2 y \right)}}{3} \left(x + y^{2}\right)\, dy$$
Integral((sin(x + 2*y)/3)*(x + y^2), (y, -1, 0))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of sine is negative cosine:

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Use integration by parts:

          Let and let .

          Then .

          To find :

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of sine is negative cosine:

              So, the result is:

            Now substitute back in:

          Now evaluate the sub-integral.

        2. Use integration by parts:

          Let and let .

          Then .

          To find :

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of cosine is sine:

              So, the result is:

            Now substitute back in:

          Now evaluate the sub-integral.

        3. The integral of a constant times a function is the constant times the integral of the function:

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of sine is negative cosine:

              So, the result is:

            Now substitute back in:

          So, the result is:

        So, the result is:

      The result is:

    Method #2

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of sine is negative cosine:

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Use integration by parts:

          Let and let .

          Then .

          To find :

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of sine is negative cosine:

              So, the result is:

            Now substitute back in:

          Now evaluate the sub-integral.

        2. Use integration by parts:

          Let and let .

          Then .

          To find :

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of cosine is sine:

              So, the result is:

            Now substitute back in:

          Now evaluate the sub-integral.

        3. The integral of a constant times a function is the constant times the integral of the function:

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of sine is negative cosine:

              So, the result is:

            Now substitute back in:

          So, the result is:

        So, the result is:

      The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                                                               
 |                                                                 2                              
 | sin(x + 2*y) /     2\          cos(x + 2*y)   x*cos(x + 2*y)   y *cos(x + 2*y)   y*sin(x + 2*y)
 | ------------*\x + y / dy = C + ------------ - -------------- - --------------- + --------------
 |      3                              12              6                 6                6       
 |                                                                                                
/                                                                                                 
$$\int \frac{\sin{\left(x + 2 y \right)}}{3} \left(x + y^{2}\right)\, dy = C - \frac{x \cos{\left(x + 2 y \right)}}{6} - \frac{y^{2} \cos{\left(x + 2 y \right)}}{6} + \frac{y \sin{\left(x + 2 y \right)}}{6} + \frac{\cos{\left(x + 2 y \right)}}{12}$$
The answer [src]
sin(-2 + x)   cos(x)   cos(-2 + x)   x*cos(x)   x*cos(-2 + x)
----------- + ------ + ----------- - -------- + -------------
     6          12          12          6             6      
$$- \frac{x \cos{\left(x \right)}}{6} + \frac{x \cos{\left(x - 2 \right)}}{6} + \frac{\sin{\left(x - 2 \right)}}{6} + \frac{\cos{\left(x \right)}}{12} + \frac{\cos{\left(x - 2 \right)}}{12}$$
=
=
sin(-2 + x)   cos(x)   cos(-2 + x)   x*cos(x)   x*cos(-2 + x)
----------- + ------ + ----------- - -------- + -------------
     6          12          12          6             6      
$$- \frac{x \cos{\left(x \right)}}{6} + \frac{x \cos{\left(x - 2 \right)}}{6} + \frac{\sin{\left(x - 2 \right)}}{6} + \frac{\cos{\left(x \right)}}{12} + \frac{\cos{\left(x - 2 \right)}}{12}$$
sin(-2 + x)/6 + cos(x)/12 + cos(-2 + x)/12 - x*cos(x)/6 + x*cos(-2 + x)/6

    Use the examples entering the upper and lower limits of integration.