Integral of sin(x+(pi/3)) dx
The solution
Detail solution
-
Let u=x+3π.
Then let du=dx and substitute du:
∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
Now substitute u back in:
−cos(x+3π)
-
Now simplify:
−cos(x+3π)
-
Add the constant of integration:
−cos(x+3π)+constant
The answer is:
−cos(x+3π)+constant
The answer (Indefinite)
[src]
/
|
| / pi\ / pi\
| sin|x + --| dx = C - cos|x + --|
| \ 3 / \ 3 /
|
/
∫sin(x+3π)dx=C−cos(x+3π)
1 / pi\
- - cos|2*p + --|
2 \ 3 /
21−cos(2p+3π)
=
1 / pi\
- - cos|2*p + --|
2 \ 3 /
21−cos(2p+3π)
Use the examples entering the upper and lower limits of integration.