Mister Exam

Other calculators

Integral of sin(x+(pi/3)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 2*p              
  /               
 |                
 |     /    pi\   
 |  sin|x + --| dx
 |     \    3 /   
 |                
/                 
0                 
02psin(x+π3)dx\int\limits_{0}^{2 p} \sin{\left(x + \frac{\pi}{3} \right)}\, dx
Integral(sin(x + pi/3), (x, 0, 2*p))
Detail solution
  1. Let u=x+π3u = x + \frac{\pi}{3}.

    Then let du=dxdu = dx and substitute dudu:

    sin(u)du\int \sin{\left(u \right)}\, du

    1. The integral of sine is negative cosine:

      sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

    Now substitute uu back in:

    cos(x+π3)- \cos{\left(x + \frac{\pi}{3} \right)}

  2. Now simplify:

    cos(x+π3)- \cos{\left(x + \frac{\pi}{3} \right)}

  3. Add the constant of integration:

    cos(x+π3)+constant- \cos{\left(x + \frac{\pi}{3} \right)}+ \mathrm{constant}


The answer is:

cos(x+π3)+constant- \cos{\left(x + \frac{\pi}{3} \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                
 |                                 
 |    /    pi\             /    pi\
 | sin|x + --| dx = C - cos|x + --|
 |    \    3 /             \    3 /
 |                                 
/                                  
sin(x+π3)dx=Ccos(x+π3)\int \sin{\left(x + \frac{\pi}{3} \right)}\, dx = C - \cos{\left(x + \frac{\pi}{3} \right)}
The answer [src]
1      /      pi\
- - cos|2*p + --|
2      \      3 /
12cos(2p+π3)\frac{1}{2} - \cos{\left(2 p + \frac{\pi}{3} \right)}
=
=
1      /      pi\
- - cos|2*p + --|
2      \      3 /
12cos(2p+π3)\frac{1}{2} - \cos{\left(2 p + \frac{\pi}{3} \right)}
1/2 - cos(2*p + pi/3)

    Use the examples entering the upper and lower limits of integration.