Integral of 5/sin(x+pi/3)^2 dx
The solution
Detail solution
-
The integral of a constant times a function is the constant times the integral of the function:
∫sin2(x+3π)5dx=5∫sin2(x+3π)1dx
-
Don't know the steps in finding this integral.
But the integral is
2tan(2x+6π)−2tan(2x+6π)1
So, the result is: 25tan(2x+6π)−2tan(2x+6π)5
-
Add the constant of integration:
25tan(2x+6π)−2tan(2x+6π)5+constant
The answer is:
25tan(2x+6π)−2tan(2x+6π)5+constant
The answer (Indefinite)
[src]
/ /x pi\
| 5*tan|- + --|
| 5 5 \2 6 /
| ------------ dx = C - ------------- + -------------
| 2/ pi\ /x pi\ 2
| sin |x + --| 2*tan|- + --|
| \ 3 / \2 6 /
|
/
∫sin2(x+3π)5dx=C+25tan(2x+6π)−2tan(2x+6π)5
The graph
3103
=
3103
Use the examples entering the upper and lower limits of integration.