Integral of sin(x+pi/4) dx
The solution
Detail solution
-
Let u=x+4π.
Then let du=dx and substitute du:
∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
Now substitute u back in:
−cos(x+4π)
-
Now simplify:
−cos(x+4π)
-
Add the constant of integration:
−cos(x+4π)+constant
The answer is:
−cos(x+4π)+constant
The answer (Indefinite)
[src]
/
|
| / pi\ / pi\
| sin|x + --| dx = C - cos|x + --|
| \ 4 / \ 4 /
|
/
∫sin(x+4π)dx=C−cos(x+4π)
The graph
Use the examples entering the upper and lower limits of integration.