Mister Exam

Other calculators

Integral of sin(x+pi/4) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi               
 --               
 4                
  /               
 |                
 |     /    pi\   
 |  sin|x + --| dx
 |     \    4 /   
 |                
/                 
0                 
0π4sin(x+π4)dx\int\limits_{0}^{\frac{\pi}{4}} \sin{\left(x + \frac{\pi}{4} \right)}\, dx
Integral(sin(x + pi/4), (x, 0, pi/4))
Detail solution
  1. Let u=x+π4u = x + \frac{\pi}{4}.

    Then let du=dxdu = dx and substitute dudu:

    sin(u)du\int \sin{\left(u \right)}\, du

    1. The integral of sine is negative cosine:

      sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

    Now substitute uu back in:

    cos(x+π4)- \cos{\left(x + \frac{\pi}{4} \right)}

  2. Now simplify:

    cos(x+π4)- \cos{\left(x + \frac{\pi}{4} \right)}

  3. Add the constant of integration:

    cos(x+π4)+constant- \cos{\left(x + \frac{\pi}{4} \right)}+ \mathrm{constant}


The answer is:

cos(x+π4)+constant- \cos{\left(x + \frac{\pi}{4} \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                
 |                                 
 |    /    pi\             /    pi\
 | sin|x + --| dx = C - cos|x + --|
 |    \    4 /             \    4 /
 |                                 
/                                  
sin(x+π4)dx=Ccos(x+π4)\int \sin{\left(x + \frac{\pi}{4} \right)}\, dx = C - \cos{\left(x + \frac{\pi}{4} \right)}
The graph
0.000.050.100.150.200.250.300.350.400.450.500.550.600.650.700.752-2
The answer [src]
  ___
\/ 2 
-----
  2  
22\frac{\sqrt{2}}{2}
=
=
  ___
\/ 2 
-----
  2  
22\frac{\sqrt{2}}{2}
sqrt(2)/2
Numerical answer [src]
0.707106781186547
0.707106781186547

    Use the examples entering the upper and lower limits of integration.