Mister Exam

Other calculators

Integral of 4sin(x+(pi/4)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |       /    pi\   
 |  4*sin|x + --| dx
 |       \    4 /   
 |                  
/                   
0                   
$$\int\limits_{0}^{1} 4 \sin{\left(x + \frac{\pi}{4} \right)}\, dx$$
Integral(4*sin(x + pi/4), (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    1. Let .

      Then let and substitute :

      1. The integral of sine is negative cosine:

      Now substitute back in:

    So, the result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                    
 |                                     
 |      /    pi\               /    pi\
 | 4*sin|x + --| dx = C - 4*cos|x + --|
 |      \    4 /               \    4 /
 |                                     
/                                      
$$\int 4 \sin{\left(x + \frac{\pi}{4} \right)}\, dx = C - 4 \cos{\left(x + \frac{\pi}{4} \right)}$$
The graph
The answer [src]
       /    pi\       ___
- 4*cos|1 + --| + 2*\/ 2 
       \    4 /          
$$- 4 \cos{\left(\frac{\pi}{4} + 1 \right)} + 2 \sqrt{2}$$
=
=
       /    pi\       ___
- 4*cos|1 + --| + 2*\/ 2 
       \    4 /          
$$- 4 \cos{\left(\frac{\pi}{4} + 1 \right)} + 2 \sqrt{2}$$
-4*cos(1 + pi/4) + 2*sqrt(2)
Numerical answer [src]
3.68026078538337
3.68026078538337

    Use the examples entering the upper and lower limits of integration.