Mister Exam

Integral of sin(x)-cos(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |  (sin(x) - cos(x)) dx
 |                      
/                       
0                       
$$\int\limits_{0}^{1} \left(\sin{\left(x \right)} - \cos{\left(x \right)}\right)\, dx$$
Integral(sin(x) - cos(x), (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of sine is negative cosine:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of cosine is sine:

      So, the result is:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                          
 |                                           
 | (sin(x) - cos(x)) dx = C - cos(x) - sin(x)
 |                                           
/                                            
$$\int \left(\sin{\left(x \right)} - \cos{\left(x \right)}\right)\, dx = C - \sin{\left(x \right)} - \cos{\left(x \right)}$$
The graph
The answer [src]
1 - cos(1) - sin(1)
$$- \sin{\left(1 \right)} - \cos{\left(1 \right)} + 1$$
=
=
1 - cos(1) - sin(1)
$$- \sin{\left(1 \right)} - \cos{\left(1 \right)} + 1$$
1 - cos(1) - sin(1)
Numerical answer [src]
-0.381773290676036
-0.381773290676036
The graph
Integral of sin(x)-cos(x) dx

    Use the examples entering the upper and lower limits of integration.