0 / | | 1 | ------------------- dx | sin(x) - cos(x) - 2 | / -2*pi
Integral(1/(sin(x) - cos(x) - 2), (x, -2*pi, 0))
Rewrite the integrand:
The integral of a constant times a function is the constant times the integral of the function:
Don't know the steps in finding this integral.
But the integral is
So, the result is:
Now simplify:
Add the constant of integration:
The answer is:
/ / /x pi\ / ___ /x\\\ | | |- - --| | ___ \/ 2 *tan|-||| | 1 ___ | |2 2 | | \/ 2 \2/|| | ------------------- dx = C - \/ 2 *|pi*floor|------| + atan|- ----- + ------------|| | sin(x) - cos(x) - 2 \ \ pi / \ 2 2 // | /
/ / ___\ \ / / ___\\ ___ | |\/ 2 | | ___ | |\/ 2 || \/ 2 *|- atan|-----| - 2*pi| - \/ 2 *|-pi - atan|-----|| \ \ 2 / / \ \ 2 //
=
/ / ___\ \ / / ___\\ ___ | |\/ 2 | | ___ | |\/ 2 || \/ 2 *|- atan|-----| - 2*pi| - \/ 2 *|-pi - atan|-----|| \ \ 2 / / \ \ 2 //
sqrt(2)*(-atan(sqrt(2)/2) - 2*pi) - sqrt(2)*(-pi - atan(sqrt(2)/2))
Use the examples entering the upper and lower limits of integration.