Mister Exam

Other calculators

Integral of 1/(sinx-cosx-2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   0                        
   /                        
  |                         
  |            1            
  |   ------------------- dx
  |   sin(x) - cos(x) - 2   
  |                         
 /                          
-2*pi                       
$$\int\limits_{- 2 \pi}^{0} \frac{1}{\left(\sin{\left(x \right)} - \cos{\left(x \right)}\right) - 2}\, dx$$
Integral(1/(sin(x) - cos(x) - 2), (x, -2*pi, 0))
Detail solution
  1. Rewrite the integrand:

  2. The integral of a constant times a function is the constant times the integral of the function:

    1. Don't know the steps in finding this integral.

      But the integral is

    So, the result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                   /        /x   pi\       /            ___    /x\\\
 |                                    |        |- - --|       |    ___   \/ 2 *tan|-|||
 |          1                     ___ |        |2   2 |       |  \/ 2             \2/||
 | ------------------- dx = C - \/ 2 *|pi*floor|------| + atan|- ----- + ------------||
 | sin(x) - cos(x) - 2                \        \  pi  /       \    2          2      //
 |                                                                                     
/                                                                                      
$$\int \frac{1}{\left(\sin{\left(x \right)} - \cos{\left(x \right)}\right) - 2}\, dx = C - \sqrt{2} \left(\operatorname{atan}{\left(\frac{\sqrt{2} \tan{\left(\frac{x}{2} \right)}}{2} - \frac{\sqrt{2}}{2} \right)} + \pi \left\lfloor{\frac{\frac{x}{2} - \frac{\pi}{2}}{\pi}}\right\rfloor\right)$$
The graph
The answer [src]
      /      /  ___\       \         /          /  ___\\
  ___ |      |\/ 2 |       |     ___ |          |\/ 2 ||
\/ 2 *|- atan|-----| - 2*pi| - \/ 2 *|-pi - atan|-----||
      \      \  2  /       /         \          \  2  //
$$\sqrt{2} \left(- 2 \pi - \operatorname{atan}{\left(\frac{\sqrt{2}}{2} \right)}\right) - \sqrt{2} \left(- \pi - \operatorname{atan}{\left(\frac{\sqrt{2}}{2} \right)}\right)$$
=
=
      /      /  ___\       \         /          /  ___\\
  ___ |      |\/ 2 |       |     ___ |          |\/ 2 ||
\/ 2 *|- atan|-----| - 2*pi| - \/ 2 *|-pi - atan|-----||
      \      \  2  /       /         \          \  2  //
$$\sqrt{2} \left(- 2 \pi - \operatorname{atan}{\left(\frac{\sqrt{2}}{2} \right)}\right) - \sqrt{2} \left(- \pi - \operatorname{atan}{\left(\frac{\sqrt{2}}{2} \right)}\right)$$
sqrt(2)*(-atan(sqrt(2)/2) - 2*pi) - sqrt(2)*(-pi - atan(sqrt(2)/2))
Numerical answer [src]
-4.44288293815837
-4.44288293815837

    Use the examples entering the upper and lower limits of integration.