Mister Exam

Other calculators

Integral of sin(x/2)/2*sign(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi                  
  /                  
 |                   
 |     /x\           
 |  sin|-|           
 |     \2/           
 |  ------*sign(x) dx
 |    2              
 |                   
/                    
-pi                  
$$\int\limits_{- \pi}^{\pi} \frac{\sin{\left(\frac{x}{2} \right)}}{2} \operatorname{sign}{\left(x \right)}\, dx$$
Integral((sin(x/2)/2)*sign(x), (x, -pi, pi))
The answer (Indefinite) [src]
                             /                 
                            |                  
  /                         |            /x\   
 |                          | sign(x)*sin|-| dx
 |    /x\                   |            \2/   
 | sin|-|                   |                  
 |    \2/                  /                   
 | ------*sign(x) dx = C + --------------------
 |   2                              2          
 |                                             
/                                              
$$\int \frac{\sin{\left(\frac{x}{2} \right)}}{2} \operatorname{sign}{\left(x \right)}\, dx = C + \frac{\int \sin{\left(\frac{x}{2} \right)} \operatorname{sign}{\left(x \right)}\, dx}{2}$$
The answer [src]
2
$$2$$
=
=
2
$$2$$
2
Numerical answer [src]
1.99975225386381
1.99975225386381

    Use the examples entering the upper and lower limits of integration.