Mister Exam

Other calculators


sinx/4+5cosx

Integral of sinx/4+5cosx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                       
  /                       
 |                        
 |  /sin(x)           \   
 |  |------ + 5*cos(x)| dx
 |  \  4              /   
 |                        
/                         
0                         
$$\int\limits_{0}^{1} \left(\frac{\sin{\left(x \right)}}{4} + 5 \cos{\left(x \right)}\right)\, dx$$
Integral(sin(x)/4 + 5*cos(x), (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of sine is negative cosine:

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of cosine is sine:

      So, the result is:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                              
 |                                               
 | /sin(x)           \                     cos(x)
 | |------ + 5*cos(x)| dx = C + 5*sin(x) - ------
 | \  4              /                       4   
 |                                               
/                                                
$$5\,\sin x-{{\cos x}\over{4}}$$
The graph
The answer [src]
1              cos(1)
- + 5*sin(1) - ------
4                4   
$${{20\,\sin 1-\cos 1+1}\over{4}}$$
=
=
1              cos(1)
- + 5*sin(1) - ------
4                4   
$$- \frac{\cos{\left(1 \right)}}{4} + \frac{1}{4} + 5 \sin{\left(1 \right)}$$
Numerical answer [src]
4.32227934757245
4.32227934757245
The graph
Integral of sinx/4+5cosx dx

    Use the examples entering the upper and lower limits of integration.