Mister Exam

Other calculators


sinx/(5+2cosx)

Integral of sinx/(5+2cosx) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |     sin(x)      
 |  ------------ dx
 |  5 + 2*cos(x)   
 |                 
/                  
0                  
$$\int\limits_{0}^{1} \frac{\sin{\left(x \right)}}{2 \cos{\left(x \right)} + 5}\, dx$$
Integral(sin(x)/(5 + 2*cos(x)), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is .

      So, the result is:

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                       
 |                                        
 |    sin(x)             log(5 + 2*cos(x))
 | ------------ dx = C - -----------------
 | 5 + 2*cos(x)                  2        
 |                                        
/                                         
$$\int \frac{\sin{\left(x \right)}}{2 \cos{\left(x \right)} + 5}\, dx = C - \frac{\log{\left(2 \cos{\left(x \right)} + 5 \right)}}{2}$$
The graph
The answer [src]
log(7/2)   log(5/2 + cos(1))
-------- - -----------------
   2               2        
$$- \frac{\log{\left(\cos{\left(1 \right)} + \frac{5}{2} \right)}}{2} + \frac{\log{\left(\frac{7}{2} \right)}}{2}$$
=
=
log(7/2)   log(5/2 + cos(1))
-------- - -----------------
   2               2        
$$- \frac{\log{\left(\cos{\left(1 \right)} + \frac{5}{2} \right)}}{2} + \frac{\log{\left(\frac{7}{2} \right)}}{2}$$
log(7/2)/2 - log(5/2 + cos(1))/2
Numerical answer [src]
0.0704030076507772
0.0704030076507772
The graph
Integral of sinx/(5+2cosx) dx

    Use the examples entering the upper and lower limits of integration.