Mister Exam

Integral of sin(x)cos(2x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |  sin(x)*cos(2*x) dx
 |                    
/                     
0                     
01sin(x)cos(2x)dx\int\limits_{0}^{1} \sin{\left(x \right)} \cos{\left(2 x \right)}\, dx
Integral(sin(x)*cos(2*x), (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

    sin(x)cos(2x)=2sin(x)cos2(x)sin(x)\sin{\left(x \right)} \cos{\left(2 x \right)} = 2 \sin{\left(x \right)} \cos^{2}{\left(x \right)} - \sin{\left(x \right)}

  2. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      2sin(x)cos2(x)dx=2sin(x)cos2(x)dx\int 2 \sin{\left(x \right)} \cos^{2}{\left(x \right)}\, dx = 2 \int \sin{\left(x \right)} \cos^{2}{\left(x \right)}\, dx

      1. Let u=cos(x)u = \cos{\left(x \right)}.

        Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

        u2du\int u^{2}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          (u2)du=u2du\int \left(- u^{2}\right)\, du = - \int u^{2}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

          So, the result is: u33- \frac{u^{3}}{3}

        Now substitute uu back in:

        cos3(x)3- \frac{\cos^{3}{\left(x \right)}}{3}

      So, the result is: 2cos3(x)3- \frac{2 \cos^{3}{\left(x \right)}}{3}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (sin(x))dx=sin(x)dx\int \left(- \sin{\left(x \right)}\right)\, dx = - \int \sin{\left(x \right)}\, dx

      1. The integral of sine is negative cosine:

        sin(x)dx=cos(x)\int \sin{\left(x \right)}\, dx = - \cos{\left(x \right)}

      So, the result is: cos(x)\cos{\left(x \right)}

    The result is: 2cos3(x)3+cos(x)- \frac{2 \cos^{3}{\left(x \right)}}{3} + \cos{\left(x \right)}

  3. Now simplify:

    (2cos(2x))cos(x)3\frac{\left(2 - \cos{\left(2 x \right)}\right) \cos{\left(x \right)}}{3}

  4. Add the constant of integration:

    (2cos(2x))cos(x)3+constant\frac{\left(2 - \cos{\left(2 x \right)}\right) \cos{\left(x \right)}}{3}+ \mathrm{constant}


The answer is:

(2cos(2x))cos(x)3+constant\frac{\left(2 - \cos{\left(2 x \right)}\right) \cos{\left(x \right)}}{3}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                              3            
 |                          2*cos (x)         
 | sin(x)*cos(2*x) dx = C - --------- + cos(x)
 |                              3             
/                                             
cosx2cos(3x)6{{\cos x}\over{2}}-{{\cos \left(3\,x\right)}\over{6}}
The graph
0.001.000.100.200.300.400.500.600.700.800.901.0-1.0
The answer [src]
  1   cos(1)*cos(2)   2*sin(1)*sin(2)
- - + ------------- + ---------------
  3         3                3       
cos33cos1613-{{\cos 3-3\,\cos 1}\over{6}}-{{1}\over{3}}
=
=
  1   cos(1)*cos(2)   2*sin(1)*sin(2)
- - + ------------- + ---------------
  3         3                3       
13+cos(1)cos(2)3+2sin(1)sin(2)3- \frac{1}{3} + \frac{\cos{\left(1 \right)} \cos{\left(2 \right)}}{3} + \frac{2 \sin{\left(1 \right)} \sin{\left(2 \right)}}{3}
Numerical answer [src]
0.101816569034144
0.101816569034144
The graph
Integral of sin(x)cos(2x) dx

    Use the examples entering the upper and lower limits of integration.