Mister Exam

Integral of y/(ylny) dy

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |     y       
 |  -------- dy
 |  y*log(y)   
 |             
/              
0              
$$\int\limits_{0}^{1} \frac{y}{y \log{\left(y \right)}}\, dy$$
Integral(y/((y*log(y))), (y, 0, 1))
Detail solution

    LiRule(a=1, b=0, context=y/((y*log(y))), symbol=y)

  1. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                       
 |                        
 |    y                   
 | -------- dy = C + li(y)
 | y*log(y)               
 |                        
/                         
$$\int \frac{y}{y \log{\left(y \right)}}\, dy = C + \operatorname{li}{\left(y \right)}$$
The answer [src]
  1          
  /          
 |           
 |    1      
 |  ------ dy
 |  log(y)   
 |           
/            
0            
$$\int\limits_{0}^{1} \frac{1}{\log{\left(y \right)}}\, dy$$
=
=
  1          
  /          
 |           
 |    1      
 |  ------ dy
 |  log(y)   
 |           
/            
0            
$$\int\limits_{0}^{1} \frac{1}{\log{\left(y \right)}}\, dy$$
Numerical answer [src]
-43.5137411213179
-43.5137411213179

    Use the examples entering the upper and lower limits of integration.