Integral of sin(w*t) dx
The solution
The answer (Indefinite)
[src]
/ //-cos(w*t) \
| ||---------- for t != 0|
| sin(w*t) dw = C + |< t |
| || |
/ \\ 0 otherwise /
$$\int \sin{\left(t w \right)}\, dw = C + \begin{cases} - \frac{\cos{\left(t w \right)}}{t} & \text{for}\: t \neq 0 \\0 & \text{otherwise} \end{cases}$$
/1 cos(t)
|- - ------ for And(t > -oo, t < oo, t != 0)
$$\begin{cases} - \frac{\cos{\left(t \right)}}{t} + \frac{1}{t} & \text{for}\: t > -\infty \wedge t < \infty \wedge t \neq 0 \\0 & \text{otherwise} \end{cases}$$
=
/1 cos(t)
|- - ------ for And(t > -oo, t < oo, t != 0)
$$\begin{cases} - \frac{\cos{\left(t \right)}}{t} + \frac{1}{t} & \text{for}\: t > -\infty \wedge t < \infty \wedge t \neq 0 \\0 & \text{otherwise} \end{cases}$$
Piecewise((1/t - cos(t)/t, (t > -oo)∧(t < oo)∧(Ne(t, 0))), (0, True))
Use the examples entering the upper and lower limits of integration.