Mister Exam

Other calculators


dx/(1+e^x)

Integral of dx/(1+e^x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |    1      
 |  ------ dx
 |       x   
 |  1 + E    
 |           
/            
0            
$$\int\limits_{0}^{1} \frac{1}{e^{x} + 1}\, dx$$
Integral(1/(1 + E^x), (x, 0, 1))
The answer (Indefinite) [src]
  /                                         
 |                                          
 |   1                /       x\      /   x\
 | ------ dx = C - log\2 + 2*e / + log\2*e /
 |      x                                   
 | 1 + E                                    
 |                                          
/                                           
$$\int \frac{1}{e^{x} + 1}\, dx = C - \log{\left(2 e^{x} + 2 \right)} + \log{\left(2 e^{x} \right)}$$
The graph
The answer [src]
1 - log(1 + E) + log(2)
$$- \log{\left(1 + e \right)} + \log{\left(2 \right)} + 1$$
=
=
1 - log(1 + E) + log(2)
$$- \log{\left(1 + e \right)} + \log{\left(2 \right)} + 1$$
1 - log(1 + E) + log(2)
Numerical answer [src]
0.379885493041722
0.379885493041722
The graph
Integral of dx/(1+e^x) dx

    Use the examples entering the upper and lower limits of integration.