1 / | | 2 | sin (w*t + f) dw | / 0
Integral(sin(w*t + f)^2, (w, 0, 1))
// /f t*w\ 3/f t*w\ 4/f t*w\ 2/f t*w\ \
|| 2*tan|- + ---| 2*tan |- + ---| t*w*tan |- + ---| 2*t*w*tan |- + ---| |
/ || \2 2 / \2 2 / t*w \2 2 / \2 2 / |
| ||- ------------------------------------------- + ------------------------------------------- + ------------------------------------------- + ------------------------------------------- + ------------------------------------------- for t != 0|
| 2 || 4/f t*w\ 2/f t*w\ 4/f t*w\ 2/f t*w\ 4/f t*w\ 2/f t*w\ 4/f t*w\ 2/f t*w\ 4/f t*w\ 2/f t*w\ |
| sin (w*t + f) dw = C + |< 2*t + 2*t*tan |- + ---| + 4*t*tan |- + ---| 2*t + 2*t*tan |- + ---| + 4*t*tan |- + ---| 2*t + 2*t*tan |- + ---| + 4*t*tan |- + ---| 2*t + 2*t*tan |- + ---| + 4*t*tan |- + ---| 2*t + 2*t*tan |- + ---| + 4*t*tan |- + ---| |
| || \2 2 / \2 2 / \2 2 / \2 2 / \2 2 / \2 2 / \2 2 / \2 2 / \2 2 / \2 2 / |
/ || |
|| 2 |
|| w*sin (f) otherwise |
\\ /
/ 2 2 |cos (f + t) sin (f + t) cos(f)*sin(f) cos(f + t)*sin(f + t) |----------- + ----------- + ------------- - --------------------- for And(t > -oo, t < oo, t != 0) < 2 2 2*t 2*t | | 2 \ sin (f) otherwise
=
/ 2 2 |cos (f + t) sin (f + t) cos(f)*sin(f) cos(f + t)*sin(f + t) |----------- + ----------- + ------------- - --------------------- for And(t > -oo, t < oo, t != 0) < 2 2 2*t 2*t | | 2 \ sin (f) otherwise
Piecewise((cos(f + t)^2/2 + sin(f + t)^2/2 + cos(f)*sin(f)/(2*t) - cos(f + t)*sin(f + t)/(2*t), (t > -oo)∧(t < oo)∧(Ne(t, 0))), (sin(f)^2, True))
Use the examples entering the upper and lower limits of integration.