Mister Exam

Other calculators

Integral of sin(w*t+f)^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |     2            
 |  sin (w*t + f) dw
 |                  
/                   
0                   
$$\int\limits_{0}^{1} \sin^{2}{\left(f + t w \right)}\, dw$$
Integral(sin(w*t + f)^2, (w, 0, 1))
The answer (Indefinite) [src]
                          //                      /f   t*w\                                    3/f   t*w\                                                                                   4/f   t*w\                                     2/f   t*w\                        \
                          ||                 2*tan|- + ---|                               2*tan |- + ---|                                                                            t*w*tan |- + ---|                            2*t*w*tan |- + ---|                        |
  /                       ||                      \2    2 /                                     \2    2 /                                     t*w                                            \2    2 /                                      \2    2 /                        |
 |                        ||- ------------------------------------------- + ------------------------------------------- + ------------------------------------------- + ------------------------------------------- + -------------------------------------------  for t != 0|
 |    2                   ||               4/f   t*w\          2/f   t*w\                4/f   t*w\          2/f   t*w\                4/f   t*w\          2/f   t*w\                4/f   t*w\          2/f   t*w\                4/f   t*w\          2/f   t*w\            |
 | sin (w*t + f) dw = C + |<  2*t + 2*t*tan |- + ---| + 4*t*tan |- + ---|   2*t + 2*t*tan |- + ---| + 4*t*tan |- + ---|   2*t + 2*t*tan |- + ---| + 4*t*tan |- + ---|   2*t + 2*t*tan |- + ---| + 4*t*tan |- + ---|   2*t + 2*t*tan |- + ---| + 4*t*tan |- + ---|            |
 |                        ||                \2    2 /           \2    2 /                 \2    2 /           \2    2 /                 \2    2 /           \2    2 /                 \2    2 /           \2    2 /                 \2    2 /           \2    2 /            |
/                         ||                                                                                                                                                                                                                                                 |
                          ||                                                                                                                   2                                                                                                                             |
                          ||                                                                                                              w*sin (f)                                                                                                                otherwise |
                          \\                                                                                                                                                                                                                                                 /
$$\int \sin^{2}{\left(f + t w \right)}\, dw = C + \begin{cases} \frac{t w \tan^{4}{\left(\frac{f}{2} + \frac{t w}{2} \right)}}{2 t \tan^{4}{\left(\frac{f}{2} + \frac{t w}{2} \right)} + 4 t \tan^{2}{\left(\frac{f}{2} + \frac{t w}{2} \right)} + 2 t} + \frac{2 t w \tan^{2}{\left(\frac{f}{2} + \frac{t w}{2} \right)}}{2 t \tan^{4}{\left(\frac{f}{2} + \frac{t w}{2} \right)} + 4 t \tan^{2}{\left(\frac{f}{2} + \frac{t w}{2} \right)} + 2 t} + \frac{t w}{2 t \tan^{4}{\left(\frac{f}{2} + \frac{t w}{2} \right)} + 4 t \tan^{2}{\left(\frac{f}{2} + \frac{t w}{2} \right)} + 2 t} + \frac{2 \tan^{3}{\left(\frac{f}{2} + \frac{t w}{2} \right)}}{2 t \tan^{4}{\left(\frac{f}{2} + \frac{t w}{2} \right)} + 4 t \tan^{2}{\left(\frac{f}{2} + \frac{t w}{2} \right)} + 2 t} - \frac{2 \tan{\left(\frac{f}{2} + \frac{t w}{2} \right)}}{2 t \tan^{4}{\left(\frac{f}{2} + \frac{t w}{2} \right)} + 4 t \tan^{2}{\left(\frac{f}{2} + \frac{t w}{2} \right)} + 2 t} & \text{for}\: t \neq 0 \\w \sin^{2}{\left(f \right)} & \text{otherwise} \end{cases}$$
The answer [src]
/   2             2                                                                                 
|cos (f + t)   sin (f + t)   cos(f)*sin(f)   cos(f + t)*sin(f + t)                                  
|----------- + ----------- + ------------- - ---------------------  for And(t > -oo, t < oo, t != 0)
<     2             2             2*t                 2*t                                           
|                                                                                                   
|                                2                                                                  
\                             sin (f)                                          otherwise            
$$\begin{cases} \frac{\sin^{2}{\left(f + t \right)}}{2} + \frac{\cos^{2}{\left(f + t \right)}}{2} + \frac{\sin{\left(f \right)} \cos{\left(f \right)}}{2 t} - \frac{\sin{\left(f + t \right)} \cos{\left(f + t \right)}}{2 t} & \text{for}\: t > -\infty \wedge t < \infty \wedge t \neq 0 \\\sin^{2}{\left(f \right)} & \text{otherwise} \end{cases}$$
=
=
/   2             2                                                                                 
|cos (f + t)   sin (f + t)   cos(f)*sin(f)   cos(f + t)*sin(f + t)                                  
|----------- + ----------- + ------------- - ---------------------  for And(t > -oo, t < oo, t != 0)
<     2             2             2*t                 2*t                                           
|                                                                                                   
|                                2                                                                  
\                             sin (f)                                          otherwise            
$$\begin{cases} \frac{\sin^{2}{\left(f + t \right)}}{2} + \frac{\cos^{2}{\left(f + t \right)}}{2} + \frac{\sin{\left(f \right)} \cos{\left(f \right)}}{2 t} - \frac{\sin{\left(f + t \right)} \cos{\left(f + t \right)}}{2 t} & \text{for}\: t > -\infty \wedge t < \infty \wedge t \neq 0 \\\sin^{2}{\left(f \right)} & \text{otherwise} \end{cases}$$
Piecewise((cos(f + t)^2/2 + sin(f + t)^2/2 + cos(f)*sin(f)/(2*t) - cos(f + t)*sin(f + t)/(2*t), (t > -oo)∧(t < oo)∧(Ne(t, 0))), (sin(f)^2, True))

    Use the examples entering the upper and lower limits of integration.