Mister Exam

Other calculators

  • How to use it?

  • Integral of d{x}:
  • Integral of x^3*e^(x^4) Integral of x^3*e^(x^4)
  • Integral of (x^2+1)e^-x Integral of (x^2+1)e^-x
  • Integral of 1/sqrt(1-y^2) Integral of 1/sqrt(1-y^2)
  • Integral of x/(x^2+4)^(1/2) Integral of x/(x^2+4)^(1/2)
  • Identical expressions

  • sin^ two (e^x)/(sqrt(x))
  • sinus of squared (e to the power of x) divide by ( square root of (x))
  • sinus of to the power of two (e to the power of x) divide by ( square root of (x))
  • sin^2(e^x)/(√(x))
  • sin2(ex)/(sqrt(x))
  • sin2ex/sqrtx
  • sin²(e^x)/(sqrt(x))
  • sin to the power of 2(e to the power of x)/(sqrt(x))
  • sin^2e^x/sqrtx
  • sin^2(e^x) divide by (sqrt(x))
  • sin^2(e^x)/(sqrt(x))dx

Integral of sin^2(e^x)/(sqrt(x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo            
  /            
 |             
 |     2/ x\   
 |  sin \E /   
 |  -------- dx
 |     ___     
 |   \/ x      
 |             
/              
0              
$$\int\limits_{0}^{\infty} \frac{\sin^{2}{\left(e^{x} \right)}}{\sqrt{x}}\, dx$$
Integral(sin(E^x)^2/sqrt(x), (x, 0, oo))
The answer (Indefinite) [src]
  /                    /           
 |                    |            
 |    2/ x\           |    2/ x\   
 | sin \E /           | sin \e /   
 | -------- dx = C +  | -------- dx
 |    ___             |    ___     
 |  \/ x              |  \/ x      
 |                    |            
/                    /             
$$\int \frac{\sin^{2}{\left(e^{x} \right)}}{\sqrt{x}}\, dx = C + \int \frac{\sin^{2}{\left(e^{x} \right)}}{\sqrt{x}}\, dx$$
The answer [src]
 oo            
  /            
 |             
 |     2/ x\   
 |  sin \e /   
 |  -------- dx
 |     ___     
 |   \/ x      
 |             
/              
0              
$$\int\limits_{0}^{\infty} \frac{\sin^{2}{\left(e^{x} \right)}}{\sqrt{x}}\, dx$$
=
=
 oo            
  /            
 |             
 |     2/ x\   
 |  sin \e /   
 |  -------- dx
 |     ___     
 |   \/ x      
 |             
/              
0              
$$\int\limits_{0}^{\infty} \frac{\sin^{2}{\left(e^{x} \right)}}{\sqrt{x}}\, dx$$
Integral(sin(exp(x))^2/sqrt(x), (x, 0, oo))

    Use the examples entering the upper and lower limits of integration.