Mister Exam

Other calculators


sin^4x/cos^6x

Integral of sin^4x/cos^6x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1           
  /           
 |            
 |     4      
 |  sin (x)   
 |  ------- dx
 |     6      
 |  cos (x)   
 |            
/             
0             
$$\int\limits_{0}^{1} \frac{\sin^{4}{\left(x \right)}}{\cos^{6}{\left(x \right)}}\, dx$$
The answer (Indefinite) [src]
  /                                                 
 |                                                  
 |    4                                             
 | sin (x)           2*sin(x)    sin(x)      sin(x) 
 | ------- dx = C - --------- + -------- + ---------
 |    6                  3      5*cos(x)        5   
 | cos (x)          5*cos (x)              5*cos (x)
 |                                                  
/                                                   
$${{\tan ^5x}\over{5}}$$
The graph
The answer [src]
   2*sin(1)    sin(1)      sin(1) 
- --------- + -------- + ---------
       3      5*cos(1)        5   
  5*cos (1)              5*cos (1)
$${{\tan ^51}\over{5}}$$
=
=
   2*sin(1)    sin(1)      sin(1) 
- --------- + -------- + ---------
       3      5*cos(1)        5   
  5*cos (1)              5*cos (1)
$$- \frac{2 \sin{\left(1 \right)}}{5 \cos^{3}{\left(1 \right)}} + \frac{\sin{\left(1 \right)}}{5 \cos{\left(1 \right)}} + \frac{\sin{\left(1 \right)}}{5 \cos^{5}{\left(1 \right)}}$$
Numerical answer [src]
1.83249001908108
1.83249001908108
The graph
Integral of sin^4x/cos^6x dx

    Use the examples entering the upper and lower limits of integration.