Mister Exam

Other calculators


e^(5x)*sin(x)

Integral of e^(5x)*sin(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |   5*x          
 |  e   *sin(x) dx
 |                
/                 
0                 
$$\int\limits_{0}^{1} e^{5 x} \sin{\left(x \right)}\, dx$$
Detail solution
  1. Use integration by parts, noting that the integrand eventually repeats itself.

    1. For the integrand :

      Let and let .

      Then .

    2. For the integrand :

      Let and let .

      Then .

    3. Notice that the integrand has repeated itself, so move it to one side:

      Therefore,

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                
 |                              5*x      5*x       
 |  5*x                 cos(x)*e      5*e   *sin(x)
 | e   *sin(x) dx = C - ----------- + -------------
 |                           26             26     
/                                                  
$${{e^{5\,x}\,\left(5\,\sin x-\cos x\right)}\over{26}}$$
The graph
The answer [src]
             5      5       
1    cos(1)*e    5*e *sin(1)
-- - --------- + -----------
26       26           26    
$${{5\,e^5\,\sin 1-e^5\,\cos 1}\over{26}}+{{1}\over{26}}$$
=
=
             5      5       
1    cos(1)*e    5*e *sin(1)
-- - --------- + -----------
26       26           26    
$$- \frac{e^{5} \cos{\left(1 \right)}}{26} + \frac{1}{26} + \frac{5 e^{5} \sin{\left(1 \right)}}{26}$$
Numerical answer [src]
20.9707255253148
20.9707255253148
The graph
Integral of e^(5x)*sin(x) dx

    Use the examples entering the upper and lower limits of integration.