Mister Exam

Other calculators

Integral of 3sin(t)-2cos(t) dt

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 3/2                        
  /                         
 |                          
 |  (3*sin(t) - 2*cos(t)) dt
 |                          
/                           
0                           
$$\int\limits_{0}^{\frac{3}{2}} \left(3 \sin{\left(t \right)} - 2 \cos{\left(t \right)}\right)\, dt$$
Integral(3*sin(t) - 2*cos(t), (t, 0, 3/2))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of sine is negative cosine:

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of cosine is sine:

      So, the result is:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                  
 |                                                   
 | (3*sin(t) - 2*cos(t)) dt = C - 3*cos(t) - 2*sin(t)
 |                                                   
/                                                    
$$\int \left(3 \sin{\left(t \right)} - 2 \cos{\left(t \right)}\right)\, dt = C - 2 \sin{\left(t \right)} - 3 \cos{\left(t \right)}$$
The graph
The answer [src]
3 - 3*cos(3/2) - 2*sin(3/2)
$$- 2 \sin{\left(\frac{3}{2} \right)} - 3 \cos{\left(\frac{3}{2} \right)} + 3$$
=
=
3 - 3*cos(3/2) - 2*sin(3/2)
$$- 2 \sin{\left(\frac{3}{2} \right)} - 3 \cos{\left(\frac{3}{2} \right)} + 3$$
3 - 3*cos(3/2) - 2*sin(3/2)
Numerical answer [src]
0.792798421788782
0.792798421788782

    Use the examples entering the upper and lower limits of integration.