Mister Exam

Other calculators

Integral of sin^2x-cos^4x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                       
  /                       
 |                        
 |  /   2         4   \   
 |  \sin (x) - cos (x)/ dx
 |                        
/                         
0                         
$$\int\limits_{0}^{1} \left(\sin^{2}{\left(x \right)} - \cos^{4}{\left(x \right)}\right)\, dx$$
Integral(sin(x)^2 - cos(x)^4, (x, 0, 1))
The answer [src]
                         3          
1   7*cos(1)*sin(1)   cos (1)*sin(1)
- - --------------- - --------------
8          8                4       
$$- \frac{7 \sin{\left(1 \right)} \cos{\left(1 \right)}}{8} - \frac{\sin{\left(1 \right)} \cos^{3}{\left(1 \right)}}{4} + \frac{1}{8}$$
=
=
                         3          
1   7*cos(1)*sin(1)   cos (1)*sin(1)
- - --------------- - --------------
8          8                4       
$$- \frac{7 \sin{\left(1 \right)} \cos{\left(1 \right)}}{8} - \frac{\sin{\left(1 \right)} \cos^{3}{\left(1 \right)}}{4} + \frac{1}{8}$$
1/8 - 7*cos(1)*sin(1)/8 - cos(1)^3*sin(1)/4

    Use the examples entering the upper and lower limits of integration.