Integral of 4^(2*x) dx
The solution
Detail solution
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫24udu
-
The integral of a constant times a function is the constant times the integral of the function:
∫4udu=2∫4udu
-
The integral of an exponential function is itself divided by the natural logarithm of the base.
∫4udu=log(4)4u
So, the result is: 2log(4)4u
Now substitute u back in:
2log(4)42x
-
Now simplify:
log(2)24x−2
-
Add the constant of integration:
log(2)24x−2+constant
The answer is:
log(2)24x−2+constant
The answer (Indefinite)
[src]
/
| 2*x
| 2*x 4
| 4 dx = C + --------
| 2*log(4)
/
∫42xdx=2log(4)42x+C
The graph
4log(2)15
=
4log(2)15
Use the examples entering the upper and lower limits of integration.