Mister Exam

Other calculators


4^(2*x)

Integral of 4^(2*x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1        
  /        
 |         
 |   2*x   
 |  4    dx
 |         
/          
0          
0142xdx\int\limits_{0}^{1} 4^{2 x}\, dx
Integral(4^(2*x), (x, 0, 1))
Detail solution
  1. Let u=2xu = 2 x.

    Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

    4u2du\int \frac{4^{u}}{2}\, du

    1. The integral of a constant times a function is the constant times the integral of the function:

      4udu=4udu2\int 4^{u}\, du = \frac{\int 4^{u}\, du}{2}

      1. The integral of an exponential function is itself divided by the natural logarithm of the base.

        4udu=4ulog(4)\int 4^{u}\, du = \frac{4^{u}}{\log{\left(4 \right)}}

      So, the result is: 4u2log(4)\frac{4^{u}}{2 \log{\left(4 \right)}}

    Now substitute uu back in:

    42x2log(4)\frac{4^{2 x}}{2 \log{\left(4 \right)}}

  2. Now simplify:

    24x2log(2)\frac{2^{4 x - 2}}{\log{\left(2 \right)}}

  3. Add the constant of integration:

    24x2log(2)+constant\frac{2^{4 x - 2}}{\log{\left(2 \right)}}+ \mathrm{constant}


The answer is:

24x2log(2)+constant\frac{2^{4 x - 2}}{\log{\left(2 \right)}}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                      
 |                  2*x  
 |  2*x            4     
 | 4    dx = C + --------
 |               2*log(4)
/                        
42xdx=42x2log(4)+C\int 4^{2 x}\, dx = \frac{4^{2 x}}{2 \log{\left(4 \right)}} + C
The graph
0.001.000.100.200.300.400.500.600.700.800.90020
The answer [src]
   15   
--------
4*log(2)
154log(2)\frac{15}{4 \log{\left(2 \right)}}
=
=
   15   
--------
4*log(2)
154log(2)\frac{15}{4 \log{\left(2 \right)}}
15/(4*log(2))
Numerical answer [src]
5.41010640333361
5.41010640333361
The graph
Integral of 4^(2*x) dx

    Use the examples entering the upper and lower limits of integration.