Mister Exam

Other calculators

Integral of sin^23x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  2            
  /            
 |             
 |     23      
 |  sin  (x) dx
 |             
/              
1              
$$\int\limits_{1}^{2} \sin^{23}{\left(x \right)}\, dx$$
Integral(sin(x)^23, (x, 1, 2))
Detail solution
  1. Rewrite the integrand:

  2. There are multiple ways to do this integral.

    Method #1

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of sine is negative cosine:

      The result is:

    Method #2

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of sine is negative cosine:

      The result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                                                                                                                                               
 |                                                                            13             17             9            21         23            3            19             7   
 |    23                            5            15            11      462*cos  (x)   165*cos  (x)   110*cos (x)   11*cos  (x)   cos  (x)   11*cos (x)   55*cos  (x)   165*cos (x)
 | sin  (x) dx = C - cos(x) - 11*cos (x) + 22*cos  (x) + 42*cos  (x) - ------------ - ------------ - ----------- - ----------- + -------- + ---------- + ----------- + -----------
 |                                                                          13             17             3             21          23          3             19            7     
/                                                                                                                                                                                 
$$\int \sin^{23}{\left(x \right)}\, dx = C + \frac{\cos^{23}{\left(x \right)}}{23} - \frac{11 \cos^{21}{\left(x \right)}}{21} + \frac{55 \cos^{19}{\left(x \right)}}{19} - \frac{165 \cos^{17}{\left(x \right)}}{17} + 22 \cos^{15}{\left(x \right)} - \frac{462 \cos^{13}{\left(x \right)}}{13} + 42 \cos^{11}{\left(x \right)} - \frac{110 \cos^{9}{\left(x \right)}}{3} + \frac{165 \cos^{7}{\left(x \right)}}{7} - 11 \cos^{5}{\left(x \right)} + \frac{11 \cos^{3}{\left(x \right)}}{3} - \cos{\left(x \right)}$$
The graph
The answer [src]
                                                                                                   13             7             17             9            19            3            21         23         23            3            21            19             9             7             17             13            
                11            15            5            5            15            11      462*cos  (2)   165*cos (1)   165*cos  (2)   110*cos (2)   55*cos  (1)   11*cos (1)   11*cos  (2)   cos  (1)   cos  (2)   11*cos (2)   11*cos  (1)   55*cos  (2)   110*cos (1)   165*cos (2)   165*cos  (1)   462*cos  (1)         
-cos(2) - 42*cos  (1) - 22*cos  (1) - 11*cos (2) + 11*cos (1) + 22*cos  (2) + 42*cos  (2) - ------------ - ----------- - ------------ - ----------- - ----------- - ---------- - ----------- - -------- + -------- + ---------- + ----------- + ----------- + ----------- + ----------- + ------------ + ------------ + cos(1)
                                                                                                 13             7             17             3             19           3             21          23         23          3             21            19            3             7             17             13              
$$- \frac{11 \cos^{3}{\left(1 \right)}}{3} - \frac{165 \cos^{7}{\left(1 \right)}}{7} + \frac{11 \cos^{3}{\left(2 \right)}}{3} + \frac{165 \cos^{7}{\left(2 \right)}}{7} - 42 \cos^{11}{\left(1 \right)} + 42 \cos^{11}{\left(2 \right)} - 22 \cos^{15}{\left(1 \right)} + 22 \cos^{15}{\left(2 \right)} - \frac{55 \cos^{19}{\left(1 \right)}}{19} + \frac{55 \cos^{19}{\left(2 \right)}}{19} - \frac{\cos^{23}{\left(1 \right)}}{23} + \frac{\cos^{23}{\left(2 \right)}}{23} - \frac{11 \cos^{21}{\left(2 \right)}}{21} + \frac{11 \cos^{21}{\left(1 \right)}}{21} - \frac{165 \cos^{17}{\left(2 \right)}}{17} + \frac{165 \cos^{17}{\left(1 \right)}}{17} - \frac{462 \cos^{13}{\left(2 \right)}}{13} + \frac{462 \cos^{13}{\left(1 \right)}}{13} - \frac{110 \cos^{9}{\left(2 \right)}}{3} - 11 \cos^{5}{\left(2 \right)} + \frac{110 \cos^{9}{\left(1 \right)}}{3} - \cos{\left(2 \right)} + 11 \cos^{5}{\left(1 \right)} + \cos{\left(1 \right)}$$
=
=
                                                                                                   13             7             17             9            19            3            21         23         23            3            21            19             9             7             17             13            
                11            15            5            5            15            11      462*cos  (2)   165*cos (1)   165*cos  (2)   110*cos (2)   55*cos  (1)   11*cos (1)   11*cos  (2)   cos  (1)   cos  (2)   11*cos (2)   11*cos  (1)   55*cos  (2)   110*cos (1)   165*cos (2)   165*cos  (1)   462*cos  (1)         
-cos(2) - 42*cos  (1) - 22*cos  (1) - 11*cos (2) + 11*cos (1) + 22*cos  (2) + 42*cos  (2) - ------------ - ----------- - ------------ - ----------- - ----------- - ---------- - ----------- - -------- + -------- + ---------- + ----------- + ----------- + ----------- + ----------- + ------------ + ------------ + cos(1)
                                                                                                 13             7             17             3             19           3             21          23         23          3             21            19            3             7             17             13              
$$- \frac{11 \cos^{3}{\left(1 \right)}}{3} - \frac{165 \cos^{7}{\left(1 \right)}}{7} + \frac{11 \cos^{3}{\left(2 \right)}}{3} + \frac{165 \cos^{7}{\left(2 \right)}}{7} - 42 \cos^{11}{\left(1 \right)} + 42 \cos^{11}{\left(2 \right)} - 22 \cos^{15}{\left(1 \right)} + 22 \cos^{15}{\left(2 \right)} - \frac{55 \cos^{19}{\left(1 \right)}}{19} + \frac{55 \cos^{19}{\left(2 \right)}}{19} - \frac{\cos^{23}{\left(1 \right)}}{23} + \frac{\cos^{23}{\left(2 \right)}}{23} - \frac{11 \cos^{21}{\left(2 \right)}}{21} + \frac{11 \cos^{21}{\left(1 \right)}}{21} - \frac{165 \cos^{17}{\left(2 \right)}}{17} + \frac{165 \cos^{17}{\left(1 \right)}}{17} - \frac{462 \cos^{13}{\left(2 \right)}}{13} + \frac{462 \cos^{13}{\left(1 \right)}}{13} - \frac{110 \cos^{9}{\left(2 \right)}}{3} - 11 \cos^{5}{\left(2 \right)} + \frac{110 \cos^{9}{\left(1 \right)}}{3} - \cos{\left(2 \right)} + 11 \cos^{5}{\left(1 \right)} + \cos{\left(1 \right)}$$
-cos(2) - 42*cos(1)^11 - 22*cos(1)^15 - 11*cos(2)^5 + 11*cos(1)^5 + 22*cos(2)^15 + 42*cos(2)^11 - 462*cos(2)^13/13 - 165*cos(1)^7/7 - 165*cos(2)^17/17 - 110*cos(2)^9/3 - 55*cos(1)^19/19 - 11*cos(1)^3/3 - 11*cos(2)^21/21 - cos(1)^23/23 + cos(2)^23/23 + 11*cos(2)^3/3 + 11*cos(1)^21/21 + 55*cos(2)^19/19 + 110*cos(1)^9/3 + 165*cos(2)^7/7 + 165*cos(1)^17/17 + 462*cos(1)^13/13 + cos(1)
Numerical answer [src]
0.506977318641844
0.506977318641844

    Use the examples entering the upper and lower limits of integration.