Mister Exam

Integral of sec dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |  sec(x) dx
 |           
/            
0            
$$\int\limits_{0}^{1} \sec{\left(x \right)}\, dx$$
Integral(sec(x), (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. Let .

    Then let and substitute :

    1. The integral of is .

    Now substitute back in:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                    
 |                                     
 | sec(x) dx = C + log(sec(x) + tan(x))
 |                                     
/                                      
$$\int \sec{\left(x \right)}\, dx = C + \log{\left(\tan{\left(x \right)} + \sec{\left(x \right)} \right)}$$
The graph
The answer [src]
log(1 + sin(1))   log(1 - sin(1))
--------------- - ---------------
       2                 2       
$$\frac{\log{\left(\sin{\left(1 \right)} + 1 \right)}}{2} - \frac{\log{\left(1 - \sin{\left(1 \right)} \right)}}{2}$$
=
=
log(1 + sin(1))   log(1 - sin(1))
--------------- - ---------------
       2                 2       
$$\frac{\log{\left(\sin{\left(1 \right)} + 1 \right)}}{2} - \frac{\log{\left(1 - \sin{\left(1 \right)} \right)}}{2}$$
log(1 + sin(1))/2 - log(1 - sin(1))/2
Numerical answer [src]
1.22619117088352
1.22619117088352
The graph
Integral of sec dx

    Use the examples entering the upper and lower limits of integration.