Detail solution
-
Let .
-
Apply the power rule: goes to
-
Then, apply the chain rule. Multiply by :
-
The derivative of sine is cosine:
The result of the chain rule is:
The answer is:
The first derivative
[src]
$$23 \sin^{22}{\left(x \right)} \cos{\left(x \right)}$$
The second derivative
[src]
21 / 2 2 \
23*sin (x)*\- sin (x) + 22*cos (x)/
$$23 \left(- \sin^{2}{\left(x \right)} + 22 \cos^{2}{\left(x \right)}\right) \sin^{21}{\left(x \right)}$$
The third derivative
[src]
20 / 2 2 \
23*sin (x)*\- 67*sin (x) + 462*cos (x)/*cos(x)
$$23 \left(- 67 \sin^{2}{\left(x \right)} + 462 \cos^{2}{\left(x \right)}\right) \sin^{20}{\left(x \right)} \cos{\left(x \right)}$$