Mister Exam

Other calculators


sin^22x×cosx

Integral of sin^22x×cosx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |     22             
 |  sin  (x)*cos(x) dx
 |                    
/                     
0                     
01sin22(x)cos(x)dx\int\limits_{0}^{1} \sin^{22}{\left(x \right)} \cos{\left(x \right)}\, dx
Integral(sin(x)^22*cos(x), (x, 0, 1))
Detail solution
  1. Let u=sin(x)u = \sin{\left(x \right)}.

    Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

    u22du\int u^{22}\, du

    1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

      u22du=u2323\int u^{22}\, du = \frac{u^{23}}{23}

    Now substitute uu back in:

    sin23(x)23\frac{\sin^{23}{\left(x \right)}}{23}

  2. Add the constant of integration:

    sin23(x)23+constant\frac{\sin^{23}{\left(x \right)}}{23}+ \mathrm{constant}


The answer is:

sin23(x)23+constant\frac{\sin^{23}{\left(x \right)}}{23}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                 
 |                             23   
 |    22                    sin  (x)
 | sin  (x)*cos(x) dx = C + --------
 |                             23   
/                                   
sin22(x)cos(x)dx=sin23(x)23+C\int \sin^{22}{\left(x \right)} \cos{\left(x \right)}\, dx = \frac{\sin^{23}{\left(x \right)}}{23} + C
The graph
0.001.000.100.200.300.400.500.600.700.800.900.000.02
The answer [src]
   23   
sin  (1)
--------
   23   
sin23123{{\sin ^{23}1}\over{23}}
=
=
   23   
sin  (1)
--------
   23   
sin23(1)23\frac{\sin^{23}{\left(1 \right)}}{23}
Numerical answer [src]
0.000820677466522084
0.000820677466522084
The graph
Integral of sin^22x×cosx dx

    Use the examples entering the upper and lower limits of integration.