Integral of sin^22x×cosx dx
The solution
Detail solution
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u22du
-
The integral of un is n+1un+1 when n=−1:
∫u22du=23u23
Now substitute u back in:
23sin23(x)
-
Add the constant of integration:
23sin23(x)+constant
The answer is:
23sin23(x)+constant
The answer (Indefinite)
[src]
/
| 23
| 22 sin (x)
| sin (x)*cos(x) dx = C + --------
| 23
/
∫sin22(x)cos(x)dx=23sin23(x)+C
The graph
23sin231
=
23sin23(1)
Use the examples entering the upper and lower limits of integration.