Mister Exam

Other calculators

Integral of sin(log2x)/x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |  sin(log(2*x))   
 |  ------------- dx
 |        x         
 |                  
/                   
0                   
01sin(log(2x))xdx\int\limits_{0}^{1} \frac{\sin{\left(\log{\left(2 x \right)} \right)}}{x}\, dx
Integral(sin(log(2*x))/x, (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=log(2x)u = \log{\left(2 x \right)}.

      Then let du=dxxdu = \frac{dx}{x} and substitute dudu:

      sin(u)du\int \sin{\left(u \right)}\, du

      1. The integral of sine is negative cosine:

        sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

      Now substitute uu back in:

      cos(log(2x))- \cos{\left(\log{\left(2 x \right)} \right)}

    Method #2

    1. Rewrite the integrand:

      sin(log(2x))x=sin(log(x)+log(2))x\frac{\sin{\left(\log{\left(2 x \right)} \right)}}{x} = \frac{\sin{\left(\log{\left(x \right)} + \log{\left(2 \right)} \right)}}{x}

    2. Let u=1xu = \frac{1}{x}.

      Then let du=dxx2du = - \frac{dx}{x^{2}} and substitute du- du:

      sin(log(1u)+log(2))udu\int \frac{\sin{\left(\log{\left(\frac{1}{u} \right)} + \log{\left(2 \right)} \right)}}{u}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        (sin(log(1u)+log(2))u)du=sin(log(1u)+log(2))udu\int \left(- \frac{\sin{\left(\log{\left(\frac{1}{u} \right)} + \log{\left(2 \right)} \right)}}{u}\right)\, du = - \int \frac{\sin{\left(\log{\left(\frac{1}{u} \right)} + \log{\left(2 \right)} \right)}}{u}\, du

        1. Let u=log(1u)+log(2)u = \log{\left(\frac{1}{u} \right)} + \log{\left(2 \right)}.

          Then let du=duudu = - \frac{du}{u} and substitute du- du:

          sin(u)du\int \sin{\left(u \right)}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            (sin(u))du=sin(u)du\int \left(- \sin{\left(u \right)}\right)\, du = - \int \sin{\left(u \right)}\, du

            1. The integral of sine is negative cosine:

              sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

            So, the result is: cos(u)\cos{\left(u \right)}

          Now substitute uu back in:

          cos(log(1u)+log(2))\cos{\left(\log{\left(\frac{1}{u} \right)} + \log{\left(2 \right)} \right)}

        So, the result is: cos(log(1u)+log(2))- \cos{\left(\log{\left(\frac{1}{u} \right)} + \log{\left(2 \right)} \right)}

      Now substitute uu back in:

      cos(log(x)+log(2))- \cos{\left(\log{\left(x \right)} + \log{\left(2 \right)} \right)}

    Method #3

    1. Rewrite the integrand:

      sin(log(2x))x=sin(log(x)+log(2))x\frac{\sin{\left(\log{\left(2 x \right)} \right)}}{x} = \frac{\sin{\left(\log{\left(x \right)} + \log{\left(2 \right)} \right)}}{x}

    2. Let u=1xu = \frac{1}{x}.

      Then let du=dxx2du = - \frac{dx}{x^{2}} and substitute du- du:

      sin(log(1u)+log(2))udu\int \frac{\sin{\left(\log{\left(\frac{1}{u} \right)} + \log{\left(2 \right)} \right)}}{u}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        (sin(log(1u)+log(2))u)du=sin(log(1u)+log(2))udu\int \left(- \frac{\sin{\left(\log{\left(\frac{1}{u} \right)} + \log{\left(2 \right)} \right)}}{u}\right)\, du = - \int \frac{\sin{\left(\log{\left(\frac{1}{u} \right)} + \log{\left(2 \right)} \right)}}{u}\, du

        1. Let u=log(1u)+log(2)u = \log{\left(\frac{1}{u} \right)} + \log{\left(2 \right)}.

          Then let du=duudu = - \frac{du}{u} and substitute du- du:

          sin(u)du\int \sin{\left(u \right)}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            (sin(u))du=sin(u)du\int \left(- \sin{\left(u \right)}\right)\, du = - \int \sin{\left(u \right)}\, du

            1. The integral of sine is negative cosine:

              sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

            So, the result is: cos(u)\cos{\left(u \right)}

          Now substitute uu back in:

          cos(log(1u)+log(2))\cos{\left(\log{\left(\frac{1}{u} \right)} + \log{\left(2 \right)} \right)}

        So, the result is: cos(log(1u)+log(2))- \cos{\left(\log{\left(\frac{1}{u} \right)} + \log{\left(2 \right)} \right)}

      Now substitute uu back in:

      cos(log(x)+log(2))- \cos{\left(\log{\left(x \right)} + \log{\left(2 \right)} \right)}

  2. Add the constant of integration:

    cos(log(2x))+constant- \cos{\left(\log{\left(2 x \right)} \right)}+ \mathrm{constant}


The answer is:

cos(log(2x))+constant- \cos{\left(\log{\left(2 x \right)} \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                    
 |                                     
 | sin(log(2*x))                       
 | ------------- dx = C - cos(log(2*x))
 |       x                             
 |                                     
/                                      
coslog(2x)-\cos \log \left(2\,x\right)
The answer [src]
<-1 - cos(log(2)), 1 - cos(log(2))>
01sinlog(2x)x  dx\int_{0}^{1}{{{\sin \log \left(2\,x\right)}\over{x}}\;dx}
=
=
<-1 - cos(log(2)), 1 - cos(log(2))>
1cos(log(2)),cos(log(2))+1\left\langle -1 - \cos{\left(\log{\left(2 \right)} \right)}, - \cos{\left(\log{\left(2 \right)} \right)} + 1\right\rangle
Numerical answer [src]
0.0812068795344031
0.0812068795344031

    Use the examples entering the upper and lower limits of integration.