Mister Exam

Other calculators

Integral of sin((4/x)+5)dx/x^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |     /4    \   
 |  sin|- + 5|   
 |     \x    /   
 |  ---------- dx
 |       2       
 |      x        
 |               
/                
0                
$$\int\limits_{0}^{1} \frac{\sin{\left(5 + \frac{4}{x} \right)}}{x^{2}}\, dx$$
Integral(sin(4/x + 5)/x^2, (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of sine is negative cosine:

      So, the result is:

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                              
 |                               
 |    /4    \             /4    \
 | sin|- + 5|          cos|- + 5|
 |    \x    /             \x    /
 | ---------- dx = C + ----------
 |      2                  4     
 |     x                         
 |                               
/                                
$$\int \frac{\sin{\left(5 + \frac{4}{x} \right)}}{x^{2}}\, dx = C + \frac{\cos{\left(5 + \frac{4}{x} \right)}}{4}$$
The graph
The answer [src]
   1   cos(9)  1   cos(9) 
<- - + ------, - + ------>
   4     4     4     4    
$$\left\langle - \frac{1}{4} + \frac{\cos{\left(9 \right)}}{4}, \frac{\cos{\left(9 \right)}}{4} + \frac{1}{4}\right\rangle$$
=
=
   1   cos(9)  1   cos(9) 
<- - + ------, - + ------>
   4     4     4     4    
$$\left\langle - \frac{1}{4} + \frac{\cos{\left(9 \right)}}{4}, \frac{\cos{\left(9 \right)}}{4} + \frac{1}{4}\right\rangle$$
AccumBounds(-1/4 + cos(9)/4, 1/4 + cos(9)/4)
Numerical answer [src]
-2.77528115406785e+18
-2.77528115406785e+18

    Use the examples entering the upper and lower limits of integration.