Mister Exam

Other calculators


xsqrt(x²+1)

Integral of xsqrt(x²+1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |       ________   
 |      /  2        
 |  x*\/  x  + 1  dx
 |                  
/                   
0                   
$$\int\limits_{0}^{1} x \sqrt{x^{2} + 1}\, dx$$
Integral(x*sqrt(x^2 + 1), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                  
 |                                3/2
 |      ________          / 2    \   
 |     /  2               \x  + 1/   
 | x*\/  x  + 1  dx = C + -----------
 |                             3     
/                                    
$$\int x \sqrt{x^{2} + 1}\, dx = C + \frac{\left(x^{2} + 1\right)^{\frac{3}{2}}}{3}$$
The graph
The answer [src]
          ___
  1   2*\/ 2 
- - + -------
  3      3   
$$- \frac{1}{3} + \frac{2 \sqrt{2}}{3}$$
=
=
          ___
  1   2*\/ 2 
- - + -------
  3      3   
$$- \frac{1}{3} + \frac{2 \sqrt{2}}{3}$$
-1/3 + 2*sqrt(2)/3
Numerical answer [src]
0.60947570824873
0.60947570824873
The graph
Integral of xsqrt(x²+1) dx

    Use the examples entering the upper and lower limits of integration.