1 / | | -cos(x) | e *sin(x) dx | / 0
Integral(exp(-cos(x))*sin(x), (x, 0, 1))
Let .
Then let and substitute :
The integral of the exponential function is itself.
Now substitute back in:
Add the constant of integration:
The answer is:
/ | | -cos(x) -cos(x) | e *sin(x) dx = C + e | /
-1 -cos(1) - e + e
=
-1 -cos(1) - e + e
-exp(-1) + exp(-cos(1))
Use the examples entering the upper and lower limits of integration.