n - 2 / | | 3 | sin (x)*sin(2*x) dx | / 0
Integral(sin(x)^3*sin(2*x), (x, 0, n/2))
There are multiple ways to do this integral.
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
So, the result is:
Rewrite the integrand:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
So, the result is:
Add the constant of integration:
The answer is:
/ | 5 | 3 2*sin (x) | sin (x)*sin(2*x) dx = C + --------- | 5 /
3/n\ 3/n\ 2/n\ /n\ 2/n\ /n\
2*sin |-|*cos(n) 2*cos |-|*sin(n) 4*cos |-|*cos(n)*sin|-| sin |-|*cos|-|*sin(n)
\2/ \2/ \2/ \2/ \2/ \2/
- ---------------- + ---------------- - ----------------------- - ---------------------
5 5 5 5
=
3/n\ 3/n\ 2/n\ /n\ 2/n\ /n\
2*sin |-|*cos(n) 2*cos |-|*sin(n) 4*cos |-|*cos(n)*sin|-| sin |-|*cos|-|*sin(n)
\2/ \2/ \2/ \2/ \2/ \2/
- ---------------- + ---------------- - ----------------------- - ---------------------
5 5 5 5
-2*sin(n/2)^3*cos(n)/5 + 2*cos(n/2)^3*sin(n)/5 - 4*cos(n/2)^2*cos(n)*sin(n/2)/5 - sin(n/2)^2*cos(n/2)*sin(n)/5
Use the examples entering the upper and lower limits of integration.