Mister Exam

Integral of sin^3t dt

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 POST_GRBEK_SMALL_pi          
 -------------------          
          2                   
          /                   
         |                    
         |             3      
         |          sin (t) dt
         |                    
        /                     
        0                     
0POSTGRBEKSMALLπ2sin3(t)dt\int\limits_{0}^{\frac{POST_{GRBEK SMALL \pi}}{2}} \sin^{3}{\left(t \right)}\, dt
Integral(sin(t)^3, (t, 0, POST_GRBEK_SMALL_pi/2))
Detail solution
  1. Rewrite the integrand:

    sin3(t)=(1cos2(t))sin(t)\sin^{3}{\left(t \right)} = \left(1 - \cos^{2}{\left(t \right)}\right) \sin{\left(t \right)}

  2. There are multiple ways to do this integral.

    Method #1

    1. Let u=cos(t)u = \cos{\left(t \right)}.

      Then let du=sin(t)dtdu = - \sin{\left(t \right)} dt and substitute dudu:

      (u21)du\int \left(u^{2} - 1\right)\, du

      1. Integrate term-by-term:

        1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

          u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

        1. The integral of a constant is the constant times the variable of integration:

          (1)du=u\int \left(-1\right)\, du = - u

        The result is: u33u\frac{u^{3}}{3} - u

      Now substitute uu back in:

      cos3(t)3cos(t)\frac{\cos^{3}{\left(t \right)}}{3} - \cos{\left(t \right)}

    Method #2

    1. Rewrite the integrand:

      (1cos2(t))sin(t)=sin(t)cos2(t)+sin(t)\left(1 - \cos^{2}{\left(t \right)}\right) \sin{\left(t \right)} = - \sin{\left(t \right)} \cos^{2}{\left(t \right)} + \sin{\left(t \right)}

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        (sin(t)cos2(t))dt=sin(t)cos2(t)dt\int \left(- \sin{\left(t \right)} \cos^{2}{\left(t \right)}\right)\, dt = - \int \sin{\left(t \right)} \cos^{2}{\left(t \right)}\, dt

        1. Let u=cos(t)u = \cos{\left(t \right)}.

          Then let du=sin(t)dtdu = - \sin{\left(t \right)} dt and substitute du- du:

          u2du\int u^{2}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            (u2)du=u2du\int \left(- u^{2}\right)\, du = - \int u^{2}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

            So, the result is: u33- \frac{u^{3}}{3}

          Now substitute uu back in:

          cos3(t)3- \frac{\cos^{3}{\left(t \right)}}{3}

        So, the result is: cos3(t)3\frac{\cos^{3}{\left(t \right)}}{3}

      1. The integral of sine is negative cosine:

        sin(t)dt=cos(t)\int \sin{\left(t \right)}\, dt = - \cos{\left(t \right)}

      The result is: cos3(t)3cos(t)\frac{\cos^{3}{\left(t \right)}}{3} - \cos{\left(t \right)}

    Method #3

    1. Rewrite the integrand:

      (1cos2(t))sin(t)=sin(t)cos2(t)+sin(t)\left(1 - \cos^{2}{\left(t \right)}\right) \sin{\left(t \right)} = - \sin{\left(t \right)} \cos^{2}{\left(t \right)} + \sin{\left(t \right)}

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        (sin(t)cos2(t))dt=sin(t)cos2(t)dt\int \left(- \sin{\left(t \right)} \cos^{2}{\left(t \right)}\right)\, dt = - \int \sin{\left(t \right)} \cos^{2}{\left(t \right)}\, dt

        1. Let u=cos(t)u = \cos{\left(t \right)}.

          Then let du=sin(t)dtdu = - \sin{\left(t \right)} dt and substitute du- du:

          u2du\int u^{2}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            (u2)du=u2du\int \left(- u^{2}\right)\, du = - \int u^{2}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

            So, the result is: u33- \frac{u^{3}}{3}

          Now substitute uu back in:

          cos3(t)3- \frac{\cos^{3}{\left(t \right)}}{3}

        So, the result is: cos3(t)3\frac{\cos^{3}{\left(t \right)}}{3}

      1. The integral of sine is negative cosine:

        sin(t)dt=cos(t)\int \sin{\left(t \right)}\, dt = - \cos{\left(t \right)}

      The result is: cos3(t)3cos(t)\frac{\cos^{3}{\left(t \right)}}{3} - \cos{\left(t \right)}

  3. Now simplify:

    (cos(2t)5)cos(t)6\frac{\left(\cos{\left(2 t \right)} - 5\right) \cos{\left(t \right)}}{6}

  4. Add the constant of integration:

    (cos(2t)5)cos(t)6+constant\frac{\left(\cos{\left(2 t \right)} - 5\right) \cos{\left(t \right)}}{6}+ \mathrm{constant}


The answer is:

(cos(2t)5)cos(t)6+constant\frac{\left(\cos{\left(2 t \right)} - 5\right) \cos{\left(t \right)}}{6}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                 
 |                              3   
 |    3                      cos (t)
 | sin (t) dt = C - cos(t) + -------
 |                              3   
/                                   
cos3t3cost{{\cos ^3t}\over{3}}-\cos t
The answer [src]
                                  3/POST_GRBEK_SMALL_pi\
                               cos |-------------------|
2      /POST_GRBEK_SMALL_pi\       \         2         /
- - cos|-------------------| + -------------------------
3      \         2         /               3            
cos3(POSTGRBEKSMALLπ2)3cos(POSTGRBEKSMALLπ2)+23\frac{\cos^{3}{\left(\frac{POST_{GRBEK SMALL \pi}}{2} \right)}}{3} - \cos{\left(\frac{POST_{GRBEK SMALL \pi}}{2} \right)} + \frac{2}{3}
=
=
                                  3/POST_GRBEK_SMALL_pi\
                               cos |-------------------|
2      /POST_GRBEK_SMALL_pi\       \         2         /
- - cos|-------------------| + -------------------------
3      \         2         /               3            
cos3(POSTGRBEKSMALLπ2)3cos(POSTGRBEKSMALLπ2)+23\frac{\cos^{3}{\left(\frac{POST_{GRBEK SMALL \pi}}{2} \right)}}{3} - \cos{\left(\frac{POST_{GRBEK SMALL \pi}}{2} \right)} + \frac{2}{3}

    Use the examples entering the upper and lower limits of integration.