Integral of sin^3t dt
The solution
Detail solution
-
Rewrite the integrand:
sin3(t)=(1−cos2(t))sin(t)
-
There are multiple ways to do this integral.
Method #1
-
Let u=cos(t).
Then let du=−sin(t)dt and substitute du:
∫(u2−1)du
-
Integrate term-by-term:
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
-
The integral of a constant is the constant times the variable of integration:
∫(−1)du=−u
The result is: 3u3−u
Now substitute u back in:
3cos3(t)−cos(t)
Method #2
-
Rewrite the integrand:
(1−cos2(t))sin(t)=−sin(t)cos2(t)+sin(t)
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−sin(t)cos2(t))dt=−∫sin(t)cos2(t)dt
-
Let u=cos(t).
Then let du=−sin(t)dt and substitute −du:
∫u2du
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u2)du=−∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: −3u3
Now substitute u back in:
−3cos3(t)
So, the result is: 3cos3(t)
-
The integral of sine is negative cosine:
∫sin(t)dt=−cos(t)
The result is: 3cos3(t)−cos(t)
Method #3
-
Rewrite the integrand:
(1−cos2(t))sin(t)=−sin(t)cos2(t)+sin(t)
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−sin(t)cos2(t))dt=−∫sin(t)cos2(t)dt
-
Let u=cos(t).
Then let du=−sin(t)dt and substitute −du:
∫u2du
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u2)du=−∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: −3u3
Now substitute u back in:
−3cos3(t)
So, the result is: 3cos3(t)
-
The integral of sine is negative cosine:
∫sin(t)dt=−cos(t)
The result is: 3cos3(t)−cos(t)
-
Now simplify:
6(cos(2t)−5)cos(t)
-
Add the constant of integration:
6(cos(2t)−5)cos(t)+constant
The answer is:
6(cos(2t)−5)cos(t)+constant
The answer (Indefinite)
[src]
/
| 3
| 3 cos (t)
| sin (t) dt = C - cos(t) + -------
| 3
/
3cos3t−cost
3/POST_GRBEK_SMALL_pi\
cos |-------------------|
2 /POST_GRBEK_SMALL_pi\ \ 2 /
- - cos|-------------------| + -------------------------
3 \ 2 / 3
3cos3(2POSTGRBEKSMALLπ)−cos(2POSTGRBEKSMALLπ)+32
=
3/POST_GRBEK_SMALL_pi\
cos |-------------------|
2 /POST_GRBEK_SMALL_pi\ \ 2 /
- - cos|-------------------| + -------------------------
3 \ 2 / 3
3cos3(2POSTGRBEKSMALLπ)−cos(2POSTGRBEKSMALLπ)+32
Use the examples entering the upper and lower limits of integration.