Mister Exam

Integral of sin^3t dt

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 POST_GRBEK_SMALL_pi          
 -------------------          
          2                   
          /                   
         |                    
         |             3      
         |          sin (t) dt
         |                    
        /                     
        0                     
$$\int\limits_{0}^{\frac{POST_{GRBEK SMALL \pi}}{2}} \sin^{3}{\left(t \right)}\, dt$$
Integral(sin(t)^3, (t, 0, POST_GRBEK_SMALL_pi/2))
Detail solution
  1. Rewrite the integrand:

  2. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. Integrate term-by-term:

        1. The integral of is when :

        1. The integral of a constant is the constant times the variable of integration:

        The result is:

      Now substitute back in:

    Method #2

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of sine is negative cosine:

      The result is:

    Method #3

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of sine is negative cosine:

      The result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                 
 |                              3   
 |    3                      cos (t)
 | sin (t) dt = C - cos(t) + -------
 |                              3   
/                                   
$${{\cos ^3t}\over{3}}-\cos t$$
The answer [src]
                                  3/POST_GRBEK_SMALL_pi\
                               cos |-------------------|
2      /POST_GRBEK_SMALL_pi\       \         2         /
- - cos|-------------------| + -------------------------
3      \         2         /               3            
$$\frac{\cos^{3}{\left(\frac{POST_{GRBEK SMALL \pi}}{2} \right)}}{3} - \cos{\left(\frac{POST_{GRBEK SMALL \pi}}{2} \right)} + \frac{2}{3}$$
=
=
                                  3/POST_GRBEK_SMALL_pi\
                               cos |-------------------|
2      /POST_GRBEK_SMALL_pi\       \         2         /
- - cos|-------------------| + -------------------------
3      \         2         /               3            
$$\frac{\cos^{3}{\left(\frac{POST_{GRBEK SMALL \pi}}{2} \right)}}{3} - \cos{\left(\frac{POST_{GRBEK SMALL \pi}}{2} \right)} + \frac{2}{3}$$

    Use the examples entering the upper and lower limits of integration.