Mister Exam

Other calculators


sin(7x−(pi/4))

Integral of sin(7x−(pi/4)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |     /      pi\   
 |  sin|7*x - --| dx
 |     \      4 /   
 |                  
/                   
0                   
01sin(7xπ4)dx\int\limits_{0}^{1} \sin{\left(7 x - \frac{\pi}{4} \right)}\, dx
Integral(sin(7*x - pi/4), (x, 0, 1))
Detail solution
  1. Let u=7xπ4u = 7 x - \frac{\pi}{4}.

    Then let du=7dxdu = 7 dx and substitute du7\frac{du}{7}:

    sin(u)49du\int \frac{\sin{\left(u \right)}}{49}\, du

    1. The integral of a constant times a function is the constant times the integral of the function:

      sin(u)7du=sin(u)du7\int \frac{\sin{\left(u \right)}}{7}\, du = \frac{\int \sin{\left(u \right)}\, du}{7}

      1. The integral of sine is negative cosine:

        sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

      So, the result is: cos(u)7- \frac{\cos{\left(u \right)}}{7}

    Now substitute uu back in:

    cos(7xπ4)7- \frac{\cos{\left(7 x - \frac{\pi}{4} \right)}}{7}

  2. Now simplify:

    sin(7x+π4)7- \frac{\sin{\left(7 x + \frac{\pi}{4} \right)}}{7}

  3. Add the constant of integration:

    sin(7x+π4)7+constant- \frac{\sin{\left(7 x + \frac{\pi}{4} \right)}}{7}+ \mathrm{constant}


The answer is:

sin(7x+π4)7+constant- \frac{\sin{\left(7 x + \frac{\pi}{4} \right)}}{7}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                          /      pi\
 |                        cos|7*x - --|
 |    /      pi\             \      4 /
 | sin|7*x - --| dx = C - -------------
 |    \      4 /                7      
 |                                     
/                                      
cos(7xπ4)7-{{\cos \left(7\,x-{{\pi}\over{4}}\right)}\over{7}}
The graph
0.001.000.100.200.300.400.500.600.700.800.902-2
The answer [src]
     /    pi\        
  sin|7 + --|     ___
     \    4 /   \/ 2 
- ----------- + -----
       7          14 
cos(π4)7cos(π284)7{{\cos \left({{\pi}\over{4}}\right)}\over{7}}-{{\cos \left({{\pi-28 }\over{4}}\right)}\over{7}}
=
=
     /    pi\        
  sin|7 + --|     ___
     \    4 /   \/ 2 
- ----------- + -----
       7          14 
sin(π4+7)7+214- \frac{\sin{\left(\frac{\pi}{4} + 7 \right)}}{7} + \frac{\sqrt{2}}{14}
Numerical answer [src]
-0.0415060420448813
-0.0415060420448813
The graph
Integral of sin(7x−(pi/4)) dx

    Use the examples entering the upper and lower limits of integration.