Mister Exam

Derivative of sin^3t

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   3   
sin (t)
sin3(t)\sin^{3}{\left(t \right)}
d /   3   \
--\sin (t)/
dt         
ddtsin3(t)\frac{d}{d t} \sin^{3}{\left(t \right)}
Detail solution
  1. Let u=sin(t)u = \sin{\left(t \right)}.

  2. Apply the power rule: u3u^{3} goes to 3u23 u^{2}

  3. Then, apply the chain rule. Multiply by ddtsin(t)\frac{d}{d t} \sin{\left(t \right)}:

    1. The derivative of sine is cosine:

      ddtsin(t)=cos(t)\frac{d}{d t} \sin{\left(t \right)} = \cos{\left(t \right)}

    The result of the chain rule is:

    3sin2(t)cos(t)3 \sin^{2}{\left(t \right)} \cos{\left(t \right)}


The answer is:

3sin2(t)cos(t)3 \sin^{2}{\left(t \right)} \cos{\left(t \right)}

The graph
02468-8-6-4-2-10102.5-2.5
The first derivative [src]
     2          
3*sin (t)*cos(t)
3sin2(t)cos(t)3 \sin^{2}{\left(t \right)} \cos{\left(t \right)}
The second derivative [src]
  /     2           2   \       
3*\- sin (t) + 2*cos (t)/*sin(t)
3(sin2(t)+2cos2(t))sin(t)3 \left(- \sin^{2}{\left(t \right)} + 2 \cos^{2}{\left(t \right)}\right) \sin{\left(t \right)}
The third derivative [src]
  /       2           2   \       
3*\- 7*sin (t) + 2*cos (t)/*cos(t)
3(7sin2(t)+2cos2(t))cos(t)3 \left(- 7 \sin^{2}{\left(t \right)} + 2 \cos^{2}{\left(t \right)}\right) \cos{\left(t \right)}
The graph
Derivative of sin^3t