3 sin (t)
d / 3 \ --\sin (t)/ dt
Let u=sin(t)u = \sin{\left(t \right)}u=sin(t).
Apply the power rule: u3u^{3}u3 goes to 3u23 u^{2}3u2
Then, apply the chain rule. Multiply by ddtsin(t)\frac{d}{d t} \sin{\left(t \right)}dtdsin(t):
The derivative of sine is cosine:
The result of the chain rule is:
The answer is:
2 3*sin (t)*cos(t)
/ 2 2 \ 3*\- sin (t) + 2*cos (t)/*sin(t)
/ 2 2 \ 3*\- 7*sin (t) + 2*cos (t)/*cos(t)