Mister Exam

Integral of sin9xcos8xdx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 157                    
 ---                    
  50                    
  /                     
 |                      
 |  sin(9*x)*cos(8*x) dx
 |                      
/                       
0                       
$$\int\limits_{0}^{\frac{157}{50}} \sin{\left(9 x \right)} \cos{\left(8 x \right)}\, dx$$
Integral(sin(9*x)*cos(8*x), (x, 0, 157/50))
The graph
The answer [src]
          /628\    /1413\        /628\    /1413\
     9*cos|---|*cos|----|   8*sin|---|*sin|----|
9         \ 25/    \ 50 /        \ 25/    \ 50 /
-- - -------------------- - --------------------
17            17                     17         
$$- \frac{8 \sin{\left(\frac{628}{25} \right)} \sin{\left(\frac{1413}{50} \right)}}{17} - \frac{9 \cos{\left(\frac{628}{25} \right)} \cos{\left(\frac{1413}{50} \right)}}{17} + \frac{9}{17}$$
=
=
          /628\    /1413\        /628\    /1413\
     9*cos|---|*cos|----|   8*sin|---|*sin|----|
9         \ 25/    \ 50 /        \ 25/    \ 50 /
-- - -------------------- - --------------------
17            17                     17         
$$- \frac{8 \sin{\left(\frac{628}{25} \right)} \sin{\left(\frac{1413}{50} \right)}}{17} - \frac{9 \cos{\left(\frac{628}{25} \right)} \cos{\left(\frac{1413}{50} \right)}}{17} + \frac{9}{17}$$
9/17 - 9*cos(628/25)*cos(1413/50)/17 - 8*sin(628/25)*sin(1413/50)/17
Numerical answer [src]
1.05881211561588
1.05881211561588

    Use the examples entering the upper and lower limits of integration.