Mister Exam

Integral of sin8xcos5x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |  sin(8*x)*cos(5*x) dx
 |                      
/                       
0                       
$$\int\limits_{0}^{1} \sin{\left(8 x \right)} \cos{\left(5 x \right)}\, dx$$
Integral(sin(8*x)*cos(5*x), (x, 0, 1))
The graph
The answer [src]
8    8*cos(5)*cos(8)   5*sin(5)*sin(8)
-- - --------------- - ---------------
39          39                39      
$$- \frac{8 \cos{\left(5 \right)} \cos{\left(8 \right)}}{39} - \frac{5 \sin{\left(5 \right)} \sin{\left(8 \right)}}{39} + \frac{8}{39}$$
=
=
8    8*cos(5)*cos(8)   5*sin(5)*sin(8)
-- - --------------- - ---------------
39          39                39      
$$- \frac{8 \cos{\left(5 \right)} \cos{\left(8 \right)}}{39} - \frac{5 \sin{\left(5 \right)} \sin{\left(8 \right)}}{39} + \frac{8}{39}$$
8/39 - 8*cos(5)*cos(8)/39 - 5*sin(5)*sin(8)/39
Numerical answer [src]
0.335225155275067
0.335225155275067
The graph
Integral of sin8xcos5x dx

    Use the examples entering the upper and lower limits of integration.