Integral of x^3*e^(-x) dx
The solution
Detail solution
-
Let u=−x.
Then let du=−dx and substitute du:
∫u3eudu
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(u)=u3 and let dv(u)=eu.
Then du(u)=3u2.
To find v(u):
-
The integral of the exponential function is itself.
∫eudu=eu
Now evaluate the sub-integral.
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(u)=3u2 and let dv(u)=eu.
Then du(u)=6u.
To find v(u):
-
The integral of the exponential function is itself.
∫eudu=eu
Now evaluate the sub-integral.
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(u)=6u and let dv(u)=eu.
Then du(u)=6.
To find v(u):
-
The integral of the exponential function is itself.
∫eudu=eu
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫6eudu=6∫eudu
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 6eu
Now substitute u back in:
−x3e−x−3x2e−x−6xe−x−6e−x
-
Now simplify:
−(x3+3x2+6x+6)e−x
-
Add the constant of integration:
−(x3+3x2+6x+6)e−x+constant
The answer is:
−(x3+3x2+6x+6)e−x+constant
The answer (Indefinite)
[src]
/
|
| 3 -x -x 3 -x -x 2 -x
| x *E dx = C - 6*e - x *e - 6*x*e - 3*x *e
|
/
∫e−xx3dx=C−x3e−x−3x2e−x−6xe−x−6e−x
The graph
6−e16
=
6−e16
Use the examples entering the upper and lower limits of integration.