Mister Exam

Other calculators


x^3*e^(-x)

Integral of x^3*e^(-x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |   3  -x   
 |  x *E   dx
 |           
/            
0            
01exx3dx\int\limits_{0}^{1} e^{- x} x^{3}\, dx
Integral(x^3*E^(-x), (x, 0, 1))
Detail solution
  1. Let u=xu = - x.

    Then let du=dxdu = - dx and substitute dudu:

    u3eudu\int u^{3} e^{u}\, du

    1. Use integration by parts:

      udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

      Let u(u)=u3u{\left(u \right)} = u^{3} and let dv(u)=eu\operatorname{dv}{\left(u \right)} = e^{u}.

      Then du(u)=3u2\operatorname{du}{\left(u \right)} = 3 u^{2}.

      To find v(u)v{\left(u \right)}:

      1. The integral of the exponential function is itself.

        eudu=eu\int e^{u}\, du = e^{u}

      Now evaluate the sub-integral.

    2. Use integration by parts:

      udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

      Let u(u)=3u2u{\left(u \right)} = 3 u^{2} and let dv(u)=eu\operatorname{dv}{\left(u \right)} = e^{u}.

      Then du(u)=6u\operatorname{du}{\left(u \right)} = 6 u.

      To find v(u)v{\left(u \right)}:

      1. The integral of the exponential function is itself.

        eudu=eu\int e^{u}\, du = e^{u}

      Now evaluate the sub-integral.

    3. Use integration by parts:

      udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

      Let u(u)=6uu{\left(u \right)} = 6 u and let dv(u)=eu\operatorname{dv}{\left(u \right)} = e^{u}.

      Then du(u)=6\operatorname{du}{\left(u \right)} = 6.

      To find v(u)v{\left(u \right)}:

      1. The integral of the exponential function is itself.

        eudu=eu\int e^{u}\, du = e^{u}

      Now evaluate the sub-integral.

    4. The integral of a constant times a function is the constant times the integral of the function:

      6eudu=6eudu\int 6 e^{u}\, du = 6 \int e^{u}\, du

      1. The integral of the exponential function is itself.

        eudu=eu\int e^{u}\, du = e^{u}

      So, the result is: 6eu6 e^{u}

    Now substitute uu back in:

    x3ex3x2ex6xex6ex- x^{3} e^{- x} - 3 x^{2} e^{- x} - 6 x e^{- x} - 6 e^{- x}

  2. Now simplify:

    (x3+3x2+6x+6)ex- \left(x^{3} + 3 x^{2} + 6 x + 6\right) e^{- x}

  3. Add the constant of integration:

    (x3+3x2+6x+6)ex+constant- \left(x^{3} + 3 x^{2} + 6 x + 6\right) e^{- x}+ \mathrm{constant}


The answer is:

(x3+3x2+6x+6)ex+constant- \left(x^{3} + 3 x^{2} + 6 x + 6\right) e^{- x}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                   
 |                                                    
 |  3  -x             -x    3  -x        -x      2  -x
 | x *E   dx = C - 6*e   - x *e   - 6*x*e   - 3*x *e  
 |                                                    
/                                                     
exx3dx=Cx3ex3x2ex6xex6ex\int e^{- x} x^{3}\, dx = C - x^{3} e^{- x} - 3 x^{2} e^{- x} - 6 x e^{- x} - 6 e^{- x}
The graph
0.001.000.100.200.300.400.500.600.700.800.905-10
The answer [src]
        -1
6 - 16*e  
616e6 - \frac{16}{e}
=
=
        -1
6 - 16*e  
616e6 - \frac{16}{e}
6 - 16*exp(-1)
Numerical answer [src]
0.113928941256923
0.113928941256923
The graph
Integral of x^3*e^(-x) dx

    Use the examples entering the upper and lower limits of integration.