Mister Exam

Integral of sin(7x)cos(4x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |  sin(7*x)*cos(4*x) dx
 |                      
/                       
0                       
$$\int\limits_{0}^{1} \sin{\left(7 x \right)} \cos{\left(4 x \right)}\, dx$$
Integral(sin(7*x)*cos(4*x), (x, 0, 1))
The graph
The answer [src]
7    7*cos(4)*cos(7)   4*sin(4)*sin(7)
-- - --------------- - ---------------
33          33                33      
$$- \frac{4 \sin{\left(4 \right)} \sin{\left(7 \right)}}{33} - \frac{7 \cos{\left(4 \right)} \cos{\left(7 \right)}}{33} + \frac{7}{33}$$
=
=
7    7*cos(4)*cos(7)   4*sin(4)*sin(7)
-- - --------------- - ---------------
33          33                33      
$$- \frac{4 \sin{\left(4 \right)} \sin{\left(7 \right)}}{33} - \frac{7 \cos{\left(4 \right)} \cos{\left(7 \right)}}{33} + \frac{7}{33}$$
7/33 - 7*cos(4)*cos(7)/33 - 4*sin(4)*sin(7)/33
Numerical answer [src]
0.376918793464254
0.376918793464254
The graph
Integral of sin(7x)cos(4x) dx

    Use the examples entering the upper and lower limits of integration.