Mister Exam

Other calculators


sin(7*x)*cos(4*x)

Integral of sin(7*x)*cos(4*x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |  sin(7*x)*cos(4*x) dx
 |                      
/                       
0                       
01sin(7x)cos(4x)dx\int\limits_{0}^{1} \sin{\left(7 x \right)} \cos{\left(4 x \right)}\, dx
Integral(sin(7*x)*cos(4*x), (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

    sin(7x)cos(4x)=512sin7(x)cos4(x)+512sin7(x)cos2(x)64sin7(x)+896sin5(x)cos4(x)896sin5(x)cos2(x)+112sin5(x)448sin3(x)cos4(x)+448sin3(x)cos2(x)56sin3(x)+56sin(x)cos4(x)56sin(x)cos2(x)+7sin(x)\sin{\left(7 x \right)} \cos{\left(4 x \right)} = - 512 \sin^{7}{\left(x \right)} \cos^{4}{\left(x \right)} + 512 \sin^{7}{\left(x \right)} \cos^{2}{\left(x \right)} - 64 \sin^{7}{\left(x \right)} + 896 \sin^{5}{\left(x \right)} \cos^{4}{\left(x \right)} - 896 \sin^{5}{\left(x \right)} \cos^{2}{\left(x \right)} + 112 \sin^{5}{\left(x \right)} - 448 \sin^{3}{\left(x \right)} \cos^{4}{\left(x \right)} + 448 \sin^{3}{\left(x \right)} \cos^{2}{\left(x \right)} - 56 \sin^{3}{\left(x \right)} + 56 \sin{\left(x \right)} \cos^{4}{\left(x \right)} - 56 \sin{\left(x \right)} \cos^{2}{\left(x \right)} + 7 \sin{\left(x \right)}

  2. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      (512sin7(x)cos4(x))dx=512sin7(x)cos4(x)dx\int \left(- 512 \sin^{7}{\left(x \right)} \cos^{4}{\left(x \right)}\right)\, dx = - 512 \int \sin^{7}{\left(x \right)} \cos^{4}{\left(x \right)}\, dx

      1. Rewrite the integrand:

        sin7(x)cos4(x)=(1cos2(x))3sin(x)cos4(x)\sin^{7}{\left(x \right)} \cos^{4}{\left(x \right)} = \left(1 - \cos^{2}{\left(x \right)}\right)^{3} \sin{\left(x \right)} \cos^{4}{\left(x \right)}

      2. There are multiple ways to do this integral.

        Method #1

        1. Let u=cos(x)u = \cos{\left(x \right)}.

          Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute dudu:

          (u103u8+3u6u4)du\int \left(u^{10} - 3 u^{8} + 3 u^{6} - u^{4}\right)\, du

          1. Integrate term-by-term:

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u10du=u1111\int u^{10}\, du = \frac{u^{11}}{11}

            1. The integral of a constant times a function is the constant times the integral of the function:

              (3u8)du=3u8du\int \left(- 3 u^{8}\right)\, du = - 3 \int u^{8}\, du

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                u8du=u99\int u^{8}\, du = \frac{u^{9}}{9}

              So, the result is: u93- \frac{u^{9}}{3}

            1. The integral of a constant times a function is the constant times the integral of the function:

              3u6du=3u6du\int 3 u^{6}\, du = 3 \int u^{6}\, du

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                u6du=u77\int u^{6}\, du = \frac{u^{7}}{7}

              So, the result is: 3u77\frac{3 u^{7}}{7}

            1. The integral of a constant times a function is the constant times the integral of the function:

              (u4)du=u4du\int \left(- u^{4}\right)\, du = - \int u^{4}\, du

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

              So, the result is: u55- \frac{u^{5}}{5}

            The result is: u1111u93+3u77u55\frac{u^{11}}{11} - \frac{u^{9}}{3} + \frac{3 u^{7}}{7} - \frac{u^{5}}{5}

          Now substitute uu back in:

          cos11(x)11cos9(x)3+3cos7(x)7cos5(x)5\frac{\cos^{11}{\left(x \right)}}{11} - \frac{\cos^{9}{\left(x \right)}}{3} + \frac{3 \cos^{7}{\left(x \right)}}{7} - \frac{\cos^{5}{\left(x \right)}}{5}

        Method #2

        1. Rewrite the integrand:

          (1cos2(x))3sin(x)cos4(x)=sin(x)cos10(x)+3sin(x)cos8(x)3sin(x)cos6(x)+sin(x)cos4(x)\left(1 - \cos^{2}{\left(x \right)}\right)^{3} \sin{\left(x \right)} \cos^{4}{\left(x \right)} = - \sin{\left(x \right)} \cos^{10}{\left(x \right)} + 3 \sin{\left(x \right)} \cos^{8}{\left(x \right)} - 3 \sin{\left(x \right)} \cos^{6}{\left(x \right)} + \sin{\left(x \right)} \cos^{4}{\left(x \right)}

        2. Integrate term-by-term:

          1. The integral of a constant times a function is the constant times the integral of the function:

            (sin(x)cos10(x))dx=sin(x)cos10(x)dx\int \left(- \sin{\left(x \right)} \cos^{10}{\left(x \right)}\right)\, dx = - \int \sin{\left(x \right)} \cos^{10}{\left(x \right)}\, dx

            1. Let u=cos(x)u = \cos{\left(x \right)}.

              Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

              u10du\int u^{10}\, du

              1. The integral of a constant times a function is the constant times the integral of the function:

                (u10)du=u10du\int \left(- u^{10}\right)\, du = - \int u^{10}\, du

                1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                  u10du=u1111\int u^{10}\, du = \frac{u^{11}}{11}

                So, the result is: u1111- \frac{u^{11}}{11}

              Now substitute uu back in:

              cos11(x)11- \frac{\cos^{11}{\left(x \right)}}{11}

            So, the result is: cos11(x)11\frac{\cos^{11}{\left(x \right)}}{11}

          1. The integral of a constant times a function is the constant times the integral of the function:

            3sin(x)cos8(x)dx=3sin(x)cos8(x)dx\int 3 \sin{\left(x \right)} \cos^{8}{\left(x \right)}\, dx = 3 \int \sin{\left(x \right)} \cos^{8}{\left(x \right)}\, dx

            1. Let u=cos(x)u = \cos{\left(x \right)}.

              Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

              u8du\int u^{8}\, du

              1. The integral of a constant times a function is the constant times the integral of the function:

                (u8)du=u8du\int \left(- u^{8}\right)\, du = - \int u^{8}\, du

                1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                  u8du=u99\int u^{8}\, du = \frac{u^{9}}{9}

                So, the result is: u99- \frac{u^{9}}{9}

              Now substitute uu back in:

              cos9(x)9- \frac{\cos^{9}{\left(x \right)}}{9}

            So, the result is: cos9(x)3- \frac{\cos^{9}{\left(x \right)}}{3}

          1. The integral of a constant times a function is the constant times the integral of the function:

            (3sin(x)cos6(x))dx=3sin(x)cos6(x)dx\int \left(- 3 \sin{\left(x \right)} \cos^{6}{\left(x \right)}\right)\, dx = - 3 \int \sin{\left(x \right)} \cos^{6}{\left(x \right)}\, dx

            1. Let u=cos(x)u = \cos{\left(x \right)}.

              Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

              u6du\int u^{6}\, du

              1. The integral of a constant times a function is the constant times the integral of the function:

                (u6)du=u6du\int \left(- u^{6}\right)\, du = - \int u^{6}\, du

                1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                  u6du=u77\int u^{6}\, du = \frac{u^{7}}{7}

                So, the result is: u77- \frac{u^{7}}{7}

              Now substitute uu back in:

              cos7(x)7- \frac{\cos^{7}{\left(x \right)}}{7}

            So, the result is: 3cos7(x)7\frac{3 \cos^{7}{\left(x \right)}}{7}

          1. Let u=cos(x)u = \cos{\left(x \right)}.

            Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

            u4du\int u^{4}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              (u4)du=u4du\int \left(- u^{4}\right)\, du = - \int u^{4}\, du

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

              So, the result is: u55- \frac{u^{5}}{5}

            Now substitute uu back in:

            cos5(x)5- \frac{\cos^{5}{\left(x \right)}}{5}

          The result is: cos11(x)11cos9(x)3+3cos7(x)7cos5(x)5\frac{\cos^{11}{\left(x \right)}}{11} - \frac{\cos^{9}{\left(x \right)}}{3} + \frac{3 \cos^{7}{\left(x \right)}}{7} - \frac{\cos^{5}{\left(x \right)}}{5}

        Method #3

        1. Rewrite the integrand:

          (1cos2(x))3sin(x)cos4(x)=sin(x)cos10(x)+3sin(x)cos8(x)3sin(x)cos6(x)+sin(x)cos4(x)\left(1 - \cos^{2}{\left(x \right)}\right)^{3} \sin{\left(x \right)} \cos^{4}{\left(x \right)} = - \sin{\left(x \right)} \cos^{10}{\left(x \right)} + 3 \sin{\left(x \right)} \cos^{8}{\left(x \right)} - 3 \sin{\left(x \right)} \cos^{6}{\left(x \right)} + \sin{\left(x \right)} \cos^{4}{\left(x \right)}

        2. Integrate term-by-term:

          1. The integral of a constant times a function is the constant times the integral of the function:

            (sin(x)cos10(x))dx=sin(x)cos10(x)dx\int \left(- \sin{\left(x \right)} \cos^{10}{\left(x \right)}\right)\, dx = - \int \sin{\left(x \right)} \cos^{10}{\left(x \right)}\, dx

            1. Let u=cos(x)u = \cos{\left(x \right)}.

              Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

              u10du\int u^{10}\, du

              1. The integral of a constant times a function is the constant times the integral of the function:

                (u10)du=u10du\int \left(- u^{10}\right)\, du = - \int u^{10}\, du

                1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                  u10du=u1111\int u^{10}\, du = \frac{u^{11}}{11}

                So, the result is: u1111- \frac{u^{11}}{11}

              Now substitute uu back in:

              cos11(x)11- \frac{\cos^{11}{\left(x \right)}}{11}

            So, the result is: cos11(x)11\frac{\cos^{11}{\left(x \right)}}{11}

          1. The integral of a constant times a function is the constant times the integral of the function:

            3sin(x)cos8(x)dx=3sin(x)cos8(x)dx\int 3 \sin{\left(x \right)} \cos^{8}{\left(x \right)}\, dx = 3 \int \sin{\left(x \right)} \cos^{8}{\left(x \right)}\, dx

            1. Let u=cos(x)u = \cos{\left(x \right)}.

              Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

              u8du\int u^{8}\, du

              1. The integral of a constant times a function is the constant times the integral of the function:

                (u8)du=u8du\int \left(- u^{8}\right)\, du = - \int u^{8}\, du

                1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                  u8du=u99\int u^{8}\, du = \frac{u^{9}}{9}

                So, the result is: u99- \frac{u^{9}}{9}

              Now substitute uu back in:

              cos9(x)9- \frac{\cos^{9}{\left(x \right)}}{9}

            So, the result is: cos9(x)3- \frac{\cos^{9}{\left(x \right)}}{3}

          1. The integral of a constant times a function is the constant times the integral of the function:

            (3sin(x)cos6(x))dx=3sin(x)cos6(x)dx\int \left(- 3 \sin{\left(x \right)} \cos^{6}{\left(x \right)}\right)\, dx = - 3 \int \sin{\left(x \right)} \cos^{6}{\left(x \right)}\, dx

            1. Let u=cos(x)u = \cos{\left(x \right)}.

              Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

              u6du\int u^{6}\, du

              1. The integral of a constant times a function is the constant times the integral of the function:

                (u6)du=u6du\int \left(- u^{6}\right)\, du = - \int u^{6}\, du

                1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                  u6du=u77\int u^{6}\, du = \frac{u^{7}}{7}

                So, the result is: u77- \frac{u^{7}}{7}

              Now substitute uu back in:

              cos7(x)7- \frac{\cos^{7}{\left(x \right)}}{7}

            So, the result is: 3cos7(x)7\frac{3 \cos^{7}{\left(x \right)}}{7}

          1. Let u=cos(x)u = \cos{\left(x \right)}.

            Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

            u4du\int u^{4}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              (u4)du=u4du\int \left(- u^{4}\right)\, du = - \int u^{4}\, du

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

              So, the result is: u55- \frac{u^{5}}{5}

            Now substitute uu back in:

            cos5(x)5- \frac{\cos^{5}{\left(x \right)}}{5}

          The result is: cos11(x)11cos9(x)3+3cos7(x)7cos5(x)5\frac{\cos^{11}{\left(x \right)}}{11} - \frac{\cos^{9}{\left(x \right)}}{3} + \frac{3 \cos^{7}{\left(x \right)}}{7} - \frac{\cos^{5}{\left(x \right)}}{5}

      So, the result is: 512cos11(x)11+512cos9(x)31536cos7(x)7+512cos5(x)5- \frac{512 \cos^{11}{\left(x \right)}}{11} + \frac{512 \cos^{9}{\left(x \right)}}{3} - \frac{1536 \cos^{7}{\left(x \right)}}{7} + \frac{512 \cos^{5}{\left(x \right)}}{5}

    1. The integral of a constant times a function is the constant times the integral of the function:

      512sin7(x)cos2(x)dx=512sin7(x)cos2(x)dx\int 512 \sin^{7}{\left(x \right)} \cos^{2}{\left(x \right)}\, dx = 512 \int \sin^{7}{\left(x \right)} \cos^{2}{\left(x \right)}\, dx

      1. Rewrite the integrand:

        sin7(x)cos2(x)=(1cos2(x))3sin(x)cos2(x)\sin^{7}{\left(x \right)} \cos^{2}{\left(x \right)} = \left(1 - \cos^{2}{\left(x \right)}\right)^{3} \sin{\left(x \right)} \cos^{2}{\left(x \right)}

      2. Let u=cos(x)u = \cos{\left(x \right)}.

        Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute dudu:

        (u83u6+3u4u2)du\int \left(u^{8} - 3 u^{6} + 3 u^{4} - u^{2}\right)\, du

        1. Integrate term-by-term:

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u8du=u99\int u^{8}\, du = \frac{u^{9}}{9}

          1. The integral of a constant times a function is the constant times the integral of the function:

            (3u6)du=3u6du\int \left(- 3 u^{6}\right)\, du = - 3 \int u^{6}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u6du=u77\int u^{6}\, du = \frac{u^{7}}{7}

            So, the result is: 3u77- \frac{3 u^{7}}{7}

          1. The integral of a constant times a function is the constant times the integral of the function:

            3u4du=3u4du\int 3 u^{4}\, du = 3 \int u^{4}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

            So, the result is: 3u55\frac{3 u^{5}}{5}

          1. The integral of a constant times a function is the constant times the integral of the function:

            (u2)du=u2du\int \left(- u^{2}\right)\, du = - \int u^{2}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

            So, the result is: u33- \frac{u^{3}}{3}

          The result is: u993u77+3u55u33\frac{u^{9}}{9} - \frac{3 u^{7}}{7} + \frac{3 u^{5}}{5} - \frac{u^{3}}{3}

        Now substitute uu back in:

        cos9(x)93cos7(x)7+3cos5(x)5cos3(x)3\frac{\cos^{9}{\left(x \right)}}{9} - \frac{3 \cos^{7}{\left(x \right)}}{7} + \frac{3 \cos^{5}{\left(x \right)}}{5} - \frac{\cos^{3}{\left(x \right)}}{3}

      So, the result is: 512cos9(x)91536cos7(x)7+1536cos5(x)5512cos3(x)3\frac{512 \cos^{9}{\left(x \right)}}{9} - \frac{1536 \cos^{7}{\left(x \right)}}{7} + \frac{1536 \cos^{5}{\left(x \right)}}{5} - \frac{512 \cos^{3}{\left(x \right)}}{3}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (64sin7(x))dx=64sin7(x)dx\int \left(- 64 \sin^{7}{\left(x \right)}\right)\, dx = - 64 \int \sin^{7}{\left(x \right)}\, dx

      1. Rewrite the integrand:

        sin7(x)=(1cos2(x))3sin(x)\sin^{7}{\left(x \right)} = \left(1 - \cos^{2}{\left(x \right)}\right)^{3} \sin{\left(x \right)}

      2. Rewrite the integrand:

        (1cos2(x))3sin(x)=sin(x)cos6(x)+3sin(x)cos4(x)3sin(x)cos2(x)+sin(x)\left(1 - \cos^{2}{\left(x \right)}\right)^{3} \sin{\left(x \right)} = - \sin{\left(x \right)} \cos^{6}{\left(x \right)} + 3 \sin{\left(x \right)} \cos^{4}{\left(x \right)} - 3 \sin{\left(x \right)} \cos^{2}{\left(x \right)} + \sin{\left(x \right)}

      3. Integrate term-by-term:

        1. The integral of a constant times a function is the constant times the integral of the function:

          (sin(x)cos6(x))dx=sin(x)cos6(x)dx\int \left(- \sin{\left(x \right)} \cos^{6}{\left(x \right)}\right)\, dx = - \int \sin{\left(x \right)} \cos^{6}{\left(x \right)}\, dx

          1. Let u=cos(x)u = \cos{\left(x \right)}.

            Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

            u6du\int u^{6}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              (u6)du=u6du\int \left(- u^{6}\right)\, du = - \int u^{6}\, du

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                u6du=u77\int u^{6}\, du = \frac{u^{7}}{7}

              So, the result is: u77- \frac{u^{7}}{7}

            Now substitute uu back in:

            cos7(x)7- \frac{\cos^{7}{\left(x \right)}}{7}

          So, the result is: cos7(x)7\frac{\cos^{7}{\left(x \right)}}{7}

        1. The integral of a constant times a function is the constant times the integral of the function:

          3sin(x)cos4(x)dx=3sin(x)cos4(x)dx\int 3 \sin{\left(x \right)} \cos^{4}{\left(x \right)}\, dx = 3 \int \sin{\left(x \right)} \cos^{4}{\left(x \right)}\, dx

          1. Let u=cos(x)u = \cos{\left(x \right)}.

            Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

            u4du\int u^{4}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              (u4)du=u4du\int \left(- u^{4}\right)\, du = - \int u^{4}\, du

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

              So, the result is: u55- \frac{u^{5}}{5}

            Now substitute uu back in:

            cos5(x)5- \frac{\cos^{5}{\left(x \right)}}{5}

          So, the result is: 3cos5(x)5- \frac{3 \cos^{5}{\left(x \right)}}{5}

        1. The integral of a constant times a function is the constant times the integral of the function:

          (3sin(x)cos2(x))dx=3sin(x)cos2(x)dx\int \left(- 3 \sin{\left(x \right)} \cos^{2}{\left(x \right)}\right)\, dx = - 3 \int \sin{\left(x \right)} \cos^{2}{\left(x \right)}\, dx

          1. Let u=cos(x)u = \cos{\left(x \right)}.

            Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

            u2du\int u^{2}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              (u2)du=u2du\int \left(- u^{2}\right)\, du = - \int u^{2}\, du

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

              So, the result is: u33- \frac{u^{3}}{3}

            Now substitute uu back in:

            cos3(x)3- \frac{\cos^{3}{\left(x \right)}}{3}

          So, the result is: cos3(x)\cos^{3}{\left(x \right)}

        1. The integral of sine is negative cosine:

          sin(x)dx=cos(x)\int \sin{\left(x \right)}\, dx = - \cos{\left(x \right)}

        The result is: cos7(x)73cos5(x)5+cos3(x)cos(x)\frac{\cos^{7}{\left(x \right)}}{7} - \frac{3 \cos^{5}{\left(x \right)}}{5} + \cos^{3}{\left(x \right)} - \cos{\left(x \right)}

      So, the result is: 64cos7(x)7+192cos5(x)564cos3(x)+64cos(x)- \frac{64 \cos^{7}{\left(x \right)}}{7} + \frac{192 \cos^{5}{\left(x \right)}}{5} - 64 \cos^{3}{\left(x \right)} + 64 \cos{\left(x \right)}

    1. The integral of a constant times a function is the constant times the integral of the function:

      896sin5(x)cos4(x)dx=896sin5(x)cos4(x)dx\int 896 \sin^{5}{\left(x \right)} \cos^{4}{\left(x \right)}\, dx = 896 \int \sin^{5}{\left(x \right)} \cos^{4}{\left(x \right)}\, dx

      1. Rewrite the integrand:

        sin5(x)cos4(x)=(1cos2(x))2sin(x)cos4(x)\sin^{5}{\left(x \right)} \cos^{4}{\left(x \right)} = \left(1 - \cos^{2}{\left(x \right)}\right)^{2} \sin{\left(x \right)} \cos^{4}{\left(x \right)}

      2. Let u=cos(x)u = \cos{\left(x \right)}.

        Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute dudu:

        (u8+2u6u4)du\int \left(- u^{8} + 2 u^{6} - u^{4}\right)\, du

        1. Integrate term-by-term:

          1. The integral of a constant times a function is the constant times the integral of the function:

            (u8)du=u8du\int \left(- u^{8}\right)\, du = - \int u^{8}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u8du=u99\int u^{8}\, du = \frac{u^{9}}{9}

            So, the result is: u99- \frac{u^{9}}{9}

          1. The integral of a constant times a function is the constant times the integral of the function:

            2u6du=2u6du\int 2 u^{6}\, du = 2 \int u^{6}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u6du=u77\int u^{6}\, du = \frac{u^{7}}{7}

            So, the result is: 2u77\frac{2 u^{7}}{7}

          1. The integral of a constant times a function is the constant times the integral of the function:

            (u4)du=u4du\int \left(- u^{4}\right)\, du = - \int u^{4}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

            So, the result is: u55- \frac{u^{5}}{5}

          The result is: u99+2u77u55- \frac{u^{9}}{9} + \frac{2 u^{7}}{7} - \frac{u^{5}}{5}

        Now substitute uu back in:

        cos9(x)9+2cos7(x)7cos5(x)5- \frac{\cos^{9}{\left(x \right)}}{9} + \frac{2 \cos^{7}{\left(x \right)}}{7} - \frac{\cos^{5}{\left(x \right)}}{5}

      So, the result is: 896cos9(x)9+256cos7(x)896cos5(x)5- \frac{896 \cos^{9}{\left(x \right)}}{9} + 256 \cos^{7}{\left(x \right)} - \frac{896 \cos^{5}{\left(x \right)}}{5}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (896sin5(x)cos2(x))dx=896sin5(x)cos2(x)dx\int \left(- 896 \sin^{5}{\left(x \right)} \cos^{2}{\left(x \right)}\right)\, dx = - 896 \int \sin^{5}{\left(x \right)} \cos^{2}{\left(x \right)}\, dx

      1. Rewrite the integrand:

        sin5(x)cos2(x)=(1cos2(x))2sin(x)cos2(x)\sin^{5}{\left(x \right)} \cos^{2}{\left(x \right)} = \left(1 - \cos^{2}{\left(x \right)}\right)^{2} \sin{\left(x \right)} \cos^{2}{\left(x \right)}

      2. Let u=cos(x)u = \cos{\left(x \right)}.

        Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute dudu:

        (u6+2u4u2)du\int \left(- u^{6} + 2 u^{4} - u^{2}\right)\, du

        1. Integrate term-by-term:

          1. The integral of a constant times a function is the constant times the integral of the function:

            (u6)du=u6du\int \left(- u^{6}\right)\, du = - \int u^{6}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u6du=u77\int u^{6}\, du = \frac{u^{7}}{7}

            So, the result is: u77- \frac{u^{7}}{7}

          1. The integral of a constant times a function is the constant times the integral of the function:

            2u4du=2u4du\int 2 u^{4}\, du = 2 \int u^{4}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

            So, the result is: 2u55\frac{2 u^{5}}{5}

          1. The integral of a constant times a function is the constant times the integral of the function:

            (u2)du=u2du\int \left(- u^{2}\right)\, du = - \int u^{2}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

            So, the result is: u33- \frac{u^{3}}{3}

          The result is: u77+2u55u33- \frac{u^{7}}{7} + \frac{2 u^{5}}{5} - \frac{u^{3}}{3}

        Now substitute uu back in:

        cos7(x)7+2cos5(x)5cos3(x)3- \frac{\cos^{7}{\left(x \right)}}{7} + \frac{2 \cos^{5}{\left(x \right)}}{5} - \frac{\cos^{3}{\left(x \right)}}{3}

      So, the result is: 128cos7(x)1792cos5(x)5+896cos3(x)3128 \cos^{7}{\left(x \right)} - \frac{1792 \cos^{5}{\left(x \right)}}{5} + \frac{896 \cos^{3}{\left(x \right)}}{3}

    1. The integral of a constant times a function is the constant times the integral of the function:

      112sin5(x)dx=112sin5(x)dx\int 112 \sin^{5}{\left(x \right)}\, dx = 112 \int \sin^{5}{\left(x \right)}\, dx

      1. Rewrite the integrand:

        sin5(x)=(1cos2(x))2sin(x)\sin^{5}{\left(x \right)} = \left(1 - \cos^{2}{\left(x \right)}\right)^{2} \sin{\left(x \right)}

      2. Rewrite the integrand:

        (1cos2(x))2sin(x)=sin(x)cos4(x)2sin(x)cos2(x)+sin(x)\left(1 - \cos^{2}{\left(x \right)}\right)^{2} \sin{\left(x \right)} = \sin{\left(x \right)} \cos^{4}{\left(x \right)} - 2 \sin{\left(x \right)} \cos^{2}{\left(x \right)} + \sin{\left(x \right)}

      3. Integrate term-by-term:

        1. Let u=cos(x)u = \cos{\left(x \right)}.

          Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

          u4du\int u^{4}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            (u4)du=u4du\int \left(- u^{4}\right)\, du = - \int u^{4}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

            So, the result is: u55- \frac{u^{5}}{5}

          Now substitute uu back in:

          cos5(x)5- \frac{\cos^{5}{\left(x \right)}}{5}

        1. The integral of a constant times a function is the constant times the integral of the function:

          (2sin(x)cos2(x))dx=2sin(x)cos2(x)dx\int \left(- 2 \sin{\left(x \right)} \cos^{2}{\left(x \right)}\right)\, dx = - 2 \int \sin{\left(x \right)} \cos^{2}{\left(x \right)}\, dx

          1. Let u=cos(x)u = \cos{\left(x \right)}.

            Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

            u2du\int u^{2}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              (u2)du=u2du\int \left(- u^{2}\right)\, du = - \int u^{2}\, du

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

              So, the result is: u33- \frac{u^{3}}{3}

            Now substitute uu back in:

            cos3(x)3- \frac{\cos^{3}{\left(x \right)}}{3}

          So, the result is: 2cos3(x)3\frac{2 \cos^{3}{\left(x \right)}}{3}

        1. The integral of sine is negative cosine:

          sin(x)dx=cos(x)\int \sin{\left(x \right)}\, dx = - \cos{\left(x \right)}

        The result is: cos5(x)5+2cos3(x)3cos(x)- \frac{\cos^{5}{\left(x \right)}}{5} + \frac{2 \cos^{3}{\left(x \right)}}{3} - \cos{\left(x \right)}

      So, the result is: 112cos5(x)5+224cos3(x)3112cos(x)- \frac{112 \cos^{5}{\left(x \right)}}{5} + \frac{224 \cos^{3}{\left(x \right)}}{3} - 112 \cos{\left(x \right)}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (448sin3(x)cos4(x))dx=448sin3(x)cos4(x)dx\int \left(- 448 \sin^{3}{\left(x \right)} \cos^{4}{\left(x \right)}\right)\, dx = - 448 \int \sin^{3}{\left(x \right)} \cos^{4}{\left(x \right)}\, dx

      1. Rewrite the integrand:

        sin3(x)cos4(x)=(1cos2(x))sin(x)cos4(x)\sin^{3}{\left(x \right)} \cos^{4}{\left(x \right)} = \left(1 - \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)} \cos^{4}{\left(x \right)}

      2. Let u=cos(x)u = \cos{\left(x \right)}.

        Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute dudu:

        (u6u4)du\int \left(u^{6} - u^{4}\right)\, du

        1. Integrate term-by-term:

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u6du=u77\int u^{6}\, du = \frac{u^{7}}{7}

          1. The integral of a constant times a function is the constant times the integral of the function:

            (u4)du=u4du\int \left(- u^{4}\right)\, du = - \int u^{4}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

            So, the result is: u55- \frac{u^{5}}{5}

          The result is: u77u55\frac{u^{7}}{7} - \frac{u^{5}}{5}

        Now substitute uu back in:

        cos7(x)7cos5(x)5\frac{\cos^{7}{\left(x \right)}}{7} - \frac{\cos^{5}{\left(x \right)}}{5}

      So, the result is: 64cos7(x)+448cos5(x)5- 64 \cos^{7}{\left(x \right)} + \frac{448 \cos^{5}{\left(x \right)}}{5}

    1. The integral of a constant times a function is the constant times the integral of the function:

      448sin3(x)cos2(x)dx=448sin3(x)cos2(x)dx\int 448 \sin^{3}{\left(x \right)} \cos^{2}{\left(x \right)}\, dx = 448 \int \sin^{3}{\left(x \right)} \cos^{2}{\left(x \right)}\, dx

      1. Rewrite the integrand:

        sin3(x)cos2(x)=(1cos2(x))sin(x)cos2(x)\sin^{3}{\left(x \right)} \cos^{2}{\left(x \right)} = \left(1 - \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)} \cos^{2}{\left(x \right)}

      2. Let u=cos(x)u = \cos{\left(x \right)}.

        Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute dudu:

        (u4u2)du\int \left(u^{4} - u^{2}\right)\, du

        1. Integrate term-by-term:

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

          1. The integral of a constant times a function is the constant times the integral of the function:

            (u2)du=u2du\int \left(- u^{2}\right)\, du = - \int u^{2}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

            So, the result is: u33- \frac{u^{3}}{3}

          The result is: u55u33\frac{u^{5}}{5} - \frac{u^{3}}{3}

        Now substitute uu back in:

        cos5(x)5cos3(x)3\frac{\cos^{5}{\left(x \right)}}{5} - \frac{\cos^{3}{\left(x \right)}}{3}

      So, the result is: 448cos5(x)5448cos3(x)3\frac{448 \cos^{5}{\left(x \right)}}{5} - \frac{448 \cos^{3}{\left(x \right)}}{3}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (56sin3(x))dx=56sin3(x)dx\int \left(- 56 \sin^{3}{\left(x \right)}\right)\, dx = - 56 \int \sin^{3}{\left(x \right)}\, dx

      1. Rewrite the integrand:

        sin3(x)=(1cos2(x))sin(x)\sin^{3}{\left(x \right)} = \left(1 - \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)}

      2. Let u=cos(x)u = \cos{\left(x \right)}.

        Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute dudu:

        (u21)du\int \left(u^{2} - 1\right)\, du

        1. Integrate term-by-term:

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

          1. The integral of a constant is the constant times the variable of integration:

            (1)du=u\int \left(-1\right)\, du = - u

          The result is: u33u\frac{u^{3}}{3} - u

        Now substitute uu back in:

        cos3(x)3cos(x)\frac{\cos^{3}{\left(x \right)}}{3} - \cos{\left(x \right)}

      So, the result is: 56cos3(x)3+56cos(x)- \frac{56 \cos^{3}{\left(x \right)}}{3} + 56 \cos{\left(x \right)}

    1. The integral of a constant times a function is the constant times the integral of the function:

      56sin(x)cos4(x)dx=56sin(x)cos4(x)dx\int 56 \sin{\left(x \right)} \cos^{4}{\left(x \right)}\, dx = 56 \int \sin{\left(x \right)} \cos^{4}{\left(x \right)}\, dx

      1. Let u=cos(x)u = \cos{\left(x \right)}.

        Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

        u4du\int u^{4}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          (u4)du=u4du\int \left(- u^{4}\right)\, du = - \int u^{4}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

          So, the result is: u55- \frac{u^{5}}{5}

        Now substitute uu back in:

        cos5(x)5- \frac{\cos^{5}{\left(x \right)}}{5}

      So, the result is: 56cos5(x)5- \frac{56 \cos^{5}{\left(x \right)}}{5}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (56sin(x)cos2(x))dx=56sin(x)cos2(x)dx\int \left(- 56 \sin{\left(x \right)} \cos^{2}{\left(x \right)}\right)\, dx = - 56 \int \sin{\left(x \right)} \cos^{2}{\left(x \right)}\, dx

      1. Let u=cos(x)u = \cos{\left(x \right)}.

        Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

        u2du\int u^{2}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          (u2)du=u2du\int \left(- u^{2}\right)\, du = - \int u^{2}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

          So, the result is: u33- \frac{u^{3}}{3}

        Now substitute uu back in:

        cos3(x)3- \frac{\cos^{3}{\left(x \right)}}{3}

      So, the result is: 56cos3(x)3\frac{56 \cos^{3}{\left(x \right)}}{3}

    1. The integral of a constant times a function is the constant times the integral of the function:

      7sin(x)dx=7sin(x)dx\int 7 \sin{\left(x \right)}\, dx = 7 \int \sin{\left(x \right)}\, dx

      1. The integral of sine is negative cosine:

        sin(x)dx=cos(x)\int \sin{\left(x \right)}\, dx = - \cos{\left(x \right)}

      So, the result is: 7cos(x)- 7 \cos{\left(x \right)}

    The result is: 512cos11(x)11+128cos9(x)128cos7(x)+56cos5(x)32cos3(x)3+cos(x)- \frac{512 \cos^{11}{\left(x \right)}}{11} + 128 \cos^{9}{\left(x \right)} - 128 \cos^{7}{\left(x \right)} + 56 \cos^{5}{\left(x \right)} - \frac{32 \cos^{3}{\left(x \right)}}{3} + \cos{\left(x \right)}

  3. Now simplify:

    (1536cos10(x)+4224cos8(x)4224cos6(x)+1848cos4(x)352cos2(x)+33)cos(x)33\frac{\left(- 1536 \cos^{10}{\left(x \right)} + 4224 \cos^{8}{\left(x \right)} - 4224 \cos^{6}{\left(x \right)} + 1848 \cos^{4}{\left(x \right)} - 352 \cos^{2}{\left(x \right)} + 33\right) \cos{\left(x \right)}}{33}

  4. Add the constant of integration:

    (1536cos10(x)+4224cos8(x)4224cos6(x)+1848cos4(x)352cos2(x)+33)cos(x)33+constant\frac{\left(- 1536 \cos^{10}{\left(x \right)} + 4224 \cos^{8}{\left(x \right)} - 4224 \cos^{6}{\left(x \right)} + 1848 \cos^{4}{\left(x \right)} - 352 \cos^{2}{\left(x \right)} + 33\right) \cos{\left(x \right)}}{33}+ \mathrm{constant}


The answer is:

(1536cos10(x)+4224cos8(x)4224cos6(x)+1848cos4(x)352cos2(x)+33)cos(x)33+constant\frac{\left(- 1536 \cos^{10}{\left(x \right)} + 4224 \cos^{8}{\left(x \right)} - 4224 \cos^{6}{\left(x \right)} + 1848 \cos^{4}{\left(x \right)} - 352 \cos^{2}{\left(x \right)} + 33\right) \cos{\left(x \right)}}{33}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                                           11            3            
 |                                   7            5             9      512*cos  (x)   32*cos (x)         
 | sin(7*x)*cos(4*x) dx = C - 128*cos (x) + 56*cos (x) + 128*cos (x) - ------------ - ---------- + cos(x)
 |                                                                          11            3              
/                                                                                                        
sin(7x)cos(4x)dx=C512cos11(x)11+128cos9(x)128cos7(x)+56cos5(x)32cos3(x)3+cos(x)\int \sin{\left(7 x \right)} \cos{\left(4 x \right)}\, dx = C - \frac{512 \cos^{11}{\left(x \right)}}{11} + 128 \cos^{9}{\left(x \right)} - 128 \cos^{7}{\left(x \right)} + 56 \cos^{5}{\left(x \right)} - \frac{32 \cos^{3}{\left(x \right)}}{3} + \cos{\left(x \right)}
The graph
0.001.000.100.200.300.400.500.600.700.800.901-1
The answer [src]
7    7*cos(4)*cos(7)   4*sin(4)*sin(7)
-- - --------------- - ---------------
33          33                33      
4sin(4)sin(7)337cos(4)cos(7)33+733- \frac{4 \sin{\left(4 \right)} \sin{\left(7 \right)}}{33} - \frac{7 \cos{\left(4 \right)} \cos{\left(7 \right)}}{33} + \frac{7}{33}
=
=
7    7*cos(4)*cos(7)   4*sin(4)*sin(7)
-- - --------------- - ---------------
33          33                33      
4sin(4)sin(7)337cos(4)cos(7)33+733- \frac{4 \sin{\left(4 \right)} \sin{\left(7 \right)}}{33} - \frac{7 \cos{\left(4 \right)} \cos{\left(7 \right)}}{33} + \frac{7}{33}
Numerical answer [src]
0.376918793464254
0.376918793464254
The graph
Integral of sin(7*x)*cos(4*x) dx

    Use the examples entering the upper and lower limits of integration.