Integral of sin(7*x)*cos(4*x) dx
The solution
Detail solution
-
Rewrite the integrand:
sin(7x)cos(4x)=−512sin7(x)cos4(x)+512sin7(x)cos2(x)−64sin7(x)+896sin5(x)cos4(x)−896sin5(x)cos2(x)+112sin5(x)−448sin3(x)cos4(x)+448sin3(x)cos2(x)−56sin3(x)+56sin(x)cos4(x)−56sin(x)cos2(x)+7sin(x)
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−512sin7(x)cos4(x))dx=−512∫sin7(x)cos4(x)dx
-
Rewrite the integrand:
sin7(x)cos4(x)=(1−cos2(x))3sin(x)cos4(x)
-
There are multiple ways to do this integral.
Method #1
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute du:
∫(u10−3u8+3u6−u4)du
-
Integrate term-by-term:
-
The integral of un is n+1un+1 when n=−1:
∫u10du=11u11
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−3u8)du=−3∫u8du
-
The integral of un is n+1un+1 when n=−1:
∫u8du=9u9
So, the result is: −3u9
-
The integral of a constant times a function is the constant times the integral of the function:
∫3u6du=3∫u6du
-
The integral of un is n+1un+1 when n=−1:
∫u6du=7u7
So, the result is: 73u7
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u4)du=−∫u4du
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
So, the result is: −5u5
The result is: 11u11−3u9+73u7−5u5
Now substitute u back in:
11cos11(x)−3cos9(x)+73cos7(x)−5cos5(x)
Method #2
-
Rewrite the integrand:
(1−cos2(x))3sin(x)cos4(x)=−sin(x)cos10(x)+3sin(x)cos8(x)−3sin(x)cos6(x)+sin(x)cos4(x)
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−sin(x)cos10(x))dx=−∫sin(x)cos10(x)dx
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute −du:
∫u10du
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u10)du=−∫u10du
-
The integral of un is n+1un+1 when n=−1:
∫u10du=11u11
So, the result is: −11u11
Now substitute u back in:
−11cos11(x)
So, the result is: 11cos11(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫3sin(x)cos8(x)dx=3∫sin(x)cos8(x)dx
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute −du:
∫u8du
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u8)du=−∫u8du
-
The integral of un is n+1un+1 when n=−1:
∫u8du=9u9
So, the result is: −9u9
Now substitute u back in:
−9cos9(x)
So, the result is: −3cos9(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−3sin(x)cos6(x))dx=−3∫sin(x)cos6(x)dx
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute −du:
∫u6du
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u6)du=−∫u6du
-
The integral of un is n+1un+1 when n=−1:
∫u6du=7u7
So, the result is: −7u7
Now substitute u back in:
−7cos7(x)
So, the result is: 73cos7(x)
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute −du:
∫u4du
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u4)du=−∫u4du
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
So, the result is: −5u5
Now substitute u back in:
−5cos5(x)
The result is: 11cos11(x)−3cos9(x)+73cos7(x)−5cos5(x)
Method #3
-
Rewrite the integrand:
(1−cos2(x))3sin(x)cos4(x)=−sin(x)cos10(x)+3sin(x)cos8(x)−3sin(x)cos6(x)+sin(x)cos4(x)
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−sin(x)cos10(x))dx=−∫sin(x)cos10(x)dx
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute −du:
∫u10du
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u10)du=−∫u10du
-
The integral of un is n+1un+1 when n=−1:
∫u10du=11u11
So, the result is: −11u11
Now substitute u back in:
−11cos11(x)
So, the result is: 11cos11(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫3sin(x)cos8(x)dx=3∫sin(x)cos8(x)dx
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute −du:
∫u8du
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u8)du=−∫u8du
-
The integral of un is n+1un+1 when n=−1:
∫u8du=9u9
So, the result is: −9u9
Now substitute u back in:
−9cos9(x)
So, the result is: −3cos9(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−3sin(x)cos6(x))dx=−3∫sin(x)cos6(x)dx
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute −du:
∫u6du
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u6)du=−∫u6du
-
The integral of un is n+1un+1 when n=−1:
∫u6du=7u7
So, the result is: −7u7
Now substitute u back in:
−7cos7(x)
So, the result is: 73cos7(x)
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute −du:
∫u4du
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u4)du=−∫u4du
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
So, the result is: −5u5
Now substitute u back in:
−5cos5(x)
The result is: 11cos11(x)−3cos9(x)+73cos7(x)−5cos5(x)
So, the result is: −11512cos11(x)+3512cos9(x)−71536cos7(x)+5512cos5(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫512sin7(x)cos2(x)dx=512∫sin7(x)cos2(x)dx
-
Rewrite the integrand:
sin7(x)cos2(x)=(1−cos2(x))3sin(x)cos2(x)
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute du:
∫(u8−3u6+3u4−u2)du
-
Integrate term-by-term:
-
The integral of un is n+1un+1 when n=−1:
∫u8du=9u9
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−3u6)du=−3∫u6du
-
The integral of un is n+1un+1 when n=−1:
∫u6du=7u7
So, the result is: −73u7
-
The integral of a constant times a function is the constant times the integral of the function:
∫3u4du=3∫u4du
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
So, the result is: 53u5
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u2)du=−∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: −3u3
The result is: 9u9−73u7+53u5−3u3
Now substitute u back in:
9cos9(x)−73cos7(x)+53cos5(x)−3cos3(x)
So, the result is: 9512cos9(x)−71536cos7(x)+51536cos5(x)−3512cos3(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−64sin7(x))dx=−64∫sin7(x)dx
-
Rewrite the integrand:
sin7(x)=(1−cos2(x))3sin(x)
-
Rewrite the integrand:
(1−cos2(x))3sin(x)=−sin(x)cos6(x)+3sin(x)cos4(x)−3sin(x)cos2(x)+sin(x)
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−sin(x)cos6(x))dx=−∫sin(x)cos6(x)dx
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute −du:
∫u6du
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u6)du=−∫u6du
-
The integral of un is n+1un+1 when n=−1:
∫u6du=7u7
So, the result is: −7u7
Now substitute u back in:
−7cos7(x)
So, the result is: 7cos7(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫3sin(x)cos4(x)dx=3∫sin(x)cos4(x)dx
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute −du:
∫u4du
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u4)du=−∫u4du
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
So, the result is: −5u5
Now substitute u back in:
−5cos5(x)
So, the result is: −53cos5(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−3sin(x)cos2(x))dx=−3∫sin(x)cos2(x)dx
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute −du:
∫u2du
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u2)du=−∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: −3u3
Now substitute u back in:
−3cos3(x)
So, the result is: cos3(x)
-
The integral of sine is negative cosine:
∫sin(x)dx=−cos(x)
The result is: 7cos7(x)−53cos5(x)+cos3(x)−cos(x)
So, the result is: −764cos7(x)+5192cos5(x)−64cos3(x)+64cos(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫896sin5(x)cos4(x)dx=896∫sin5(x)cos4(x)dx
-
Rewrite the integrand:
sin5(x)cos4(x)=(1−cos2(x))2sin(x)cos4(x)
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute du:
∫(−u8+2u6−u4)du
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u8)du=−∫u8du
-
The integral of un is n+1un+1 when n=−1:
∫u8du=9u9
So, the result is: −9u9
-
The integral of a constant times a function is the constant times the integral of the function:
∫2u6du=2∫u6du
-
The integral of un is n+1un+1 when n=−1:
∫u6du=7u7
So, the result is: 72u7
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u4)du=−∫u4du
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
So, the result is: −5u5
The result is: −9u9+72u7−5u5
Now substitute u back in:
−9cos9(x)+72cos7(x)−5cos5(x)
So, the result is: −9896cos9(x)+256cos7(x)−5896cos5(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−896sin5(x)cos2(x))dx=−896∫sin5(x)cos2(x)dx
-
Rewrite the integrand:
sin5(x)cos2(x)=(1−cos2(x))2sin(x)cos2(x)
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute du:
∫(−u6+2u4−u2)du
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u6)du=−∫u6du
-
The integral of un is n+1un+1 when n=−1:
∫u6du=7u7
So, the result is: −7u7
-
The integral of a constant times a function is the constant times the integral of the function:
∫2u4du=2∫u4du
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
So, the result is: 52u5
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u2)du=−∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: −3u3
The result is: −7u7+52u5−3u3
Now substitute u back in:
−7cos7(x)+52cos5(x)−3cos3(x)
So, the result is: 128cos7(x)−51792cos5(x)+3896cos3(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫112sin5(x)dx=112∫sin5(x)dx
-
Rewrite the integrand:
sin5(x)=(1−cos2(x))2sin(x)
-
Rewrite the integrand:
(1−cos2(x))2sin(x)=sin(x)cos4(x)−2sin(x)cos2(x)+sin(x)
-
Integrate term-by-term:
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute −du:
∫u4du
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u4)du=−∫u4du
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
So, the result is: −5u5
Now substitute u back in:
−5cos5(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2sin(x)cos2(x))dx=−2∫sin(x)cos2(x)dx
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute −du:
∫u2du
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u2)du=−∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: −3u3
Now substitute u back in:
−3cos3(x)
So, the result is: 32cos3(x)
-
The integral of sine is negative cosine:
∫sin(x)dx=−cos(x)
The result is: −5cos5(x)+32cos3(x)−cos(x)
So, the result is: −5112cos5(x)+3224cos3(x)−112cos(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−448sin3(x)cos4(x))dx=−448∫sin3(x)cos4(x)dx
-
Rewrite the integrand:
sin3(x)cos4(x)=(1−cos2(x))sin(x)cos4(x)
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute du:
∫(u6−u4)du
-
Integrate term-by-term:
-
The integral of un is n+1un+1 when n=−1:
∫u6du=7u7
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u4)du=−∫u4du
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
So, the result is: −5u5
The result is: 7u7−5u5
Now substitute u back in:
7cos7(x)−5cos5(x)
So, the result is: −64cos7(x)+5448cos5(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫448sin3(x)cos2(x)dx=448∫sin3(x)cos2(x)dx
-
Rewrite the integrand:
sin3(x)cos2(x)=(1−cos2(x))sin(x)cos2(x)
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute du:
∫(u4−u2)du
-
Integrate term-by-term:
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u2)du=−∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: −3u3
The result is: 5u5−3u3
Now substitute u back in:
5cos5(x)−3cos3(x)
So, the result is: 5448cos5(x)−3448cos3(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−56sin3(x))dx=−56∫sin3(x)dx
-
Rewrite the integrand:
sin3(x)=(1−cos2(x))sin(x)
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute du:
∫(u2−1)du
-
Integrate term-by-term:
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
-
The integral of a constant is the constant times the variable of integration:
∫(−1)du=−u
The result is: 3u3−u
Now substitute u back in:
3cos3(x)−cos(x)
So, the result is: −356cos3(x)+56cos(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫56sin(x)cos4(x)dx=56∫sin(x)cos4(x)dx
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute −du:
∫u4du
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u4)du=−∫u4du
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
So, the result is: −5u5
Now substitute u back in:
−5cos5(x)
So, the result is: −556cos5(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−56sin(x)cos2(x))dx=−56∫sin(x)cos2(x)dx
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute −du:
∫u2du
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u2)du=−∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: −3u3
Now substitute u back in:
−3cos3(x)
So, the result is: 356cos3(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫7sin(x)dx=7∫sin(x)dx
-
The integral of sine is negative cosine:
∫sin(x)dx=−cos(x)
So, the result is: −7cos(x)
The result is: −11512cos11(x)+128cos9(x)−128cos7(x)+56cos5(x)−332cos3(x)+cos(x)
-
Now simplify:
33(−1536cos10(x)+4224cos8(x)−4224cos6(x)+1848cos4(x)−352cos2(x)+33)cos(x)
-
Add the constant of integration:
33(−1536cos10(x)+4224cos8(x)−4224cos6(x)+1848cos4(x)−352cos2(x)+33)cos(x)+constant
The answer is:
33(−1536cos10(x)+4224cos8(x)−4224cos6(x)+1848cos4(x)−352cos2(x)+33)cos(x)+constant
The answer (Indefinite)
[src]
/ 11 3
| 7 5 9 512*cos (x) 32*cos (x)
| sin(7*x)*cos(4*x) dx = C - 128*cos (x) + 56*cos (x) + 128*cos (x) - ------------ - ---------- + cos(x)
| 11 3
/
∫sin(7x)cos(4x)dx=C−11512cos11(x)+128cos9(x)−128cos7(x)+56cos5(x)−332cos3(x)+cos(x)
The graph
7 7*cos(4)*cos(7) 4*sin(4)*sin(7)
-- - --------------- - ---------------
33 33 33
−334sin(4)sin(7)−337cos(4)cos(7)+337
=
7 7*cos(4)*cos(7) 4*sin(4)*sin(7)
-- - --------------- - ---------------
33 33 33
−334sin(4)sin(7)−337cos(4)cos(7)+337
Use the examples entering the upper and lower limits of integration.