Integral of sin(7x) dx
The solution
Detail solution
-
Let u=7x.
Then let du=7dx and substitute 7du:
∫7sin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫sin(u)du=7∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
So, the result is: −7cos(u)
Now substitute u back in:
−7cos(7x)
-
Add the constant of integration:
−7cos(7x)+constant
The answer is:
−7cos(7x)+constant
The answer (Indefinite)
[src]
/
| cos(7*x)
| sin(7*x) dx = C - --------
| 7
/
∫sin(7x)dx=C−7cos(7x)
The graph
71−7cos(7)
=
71−7cos(7)
Use the examples entering the upper and lower limits of integration.