Mister Exam

Integral of sin(7x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |  sin(7*x) dx
 |             
/              
0              
01sin(7x)dx\int\limits_{0}^{1} \sin{\left(7 x \right)}\, dx
Integral(sin(7*x), (x, 0, 1))
Detail solution
  1. Let u=7xu = 7 x.

    Then let du=7dxdu = 7 dx and substitute du7\frac{du}{7}:

    sin(u)7du\int \frac{\sin{\left(u \right)}}{7}\, du

    1. The integral of a constant times a function is the constant times the integral of the function:

      sin(u)du=sin(u)du7\int \sin{\left(u \right)}\, du = \frac{\int \sin{\left(u \right)}\, du}{7}

      1. The integral of sine is negative cosine:

        sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

      So, the result is: cos(u)7- \frac{\cos{\left(u \right)}}{7}

    Now substitute uu back in:

    cos(7x)7- \frac{\cos{\left(7 x \right)}}{7}

  2. Add the constant of integration:

    cos(7x)7+constant- \frac{\cos{\left(7 x \right)}}{7}+ \mathrm{constant}


The answer is:

cos(7x)7+constant- \frac{\cos{\left(7 x \right)}}{7}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                          
 |                   cos(7*x)
 | sin(7*x) dx = C - --------
 |                      7    
/                            
sin(7x)dx=Ccos(7x)7\int \sin{\left(7 x \right)}\, dx = C - \frac{\cos{\left(7 x \right)}}{7}
The graph
0.001.000.100.200.300.400.500.600.700.800.902-2
The answer [src]
1   cos(7)
- - ------
7     7   
17cos(7)7\frac{1}{7} - \frac{\cos{\left(7 \right)}}{7}
=
=
1   cos(7)
- - ------
7     7   
17cos(7)7\frac{1}{7} - \frac{\cos{\left(7 \right)}}{7}
1/7 - cos(7)/7
Numerical answer [src]
0.0351568208080993
0.0351568208080993
The graph
Integral of sin(7x) dx

    Use the examples entering the upper and lower limits of integration.