Mister Exam

Integral of sin7xcos3x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |  sin(7*x)*cos(3*x) dx
 |                      
/                       
0                       
$$\int\limits_{0}^{1} \sin{\left(7 x \right)} \cos{\left(3 x \right)}\, dx$$
Integral(sin(7*x)*cos(3*x), (x, 0, 1))
The graph
The answer [src]
7    7*cos(3)*cos(7)   3*sin(3)*sin(7)
-- - --------------- - ---------------
40          40                40      
$$- \frac{3 \sin{\left(3 \right)} \sin{\left(7 \right)}}{40} - \frac{7 \cos{\left(3 \right)} \cos{\left(7 \right)}}{40} + \frac{7}{40}$$
=
=
7    7*cos(3)*cos(7)   3*sin(3)*sin(7)
-- - --------------- - ---------------
40          40                40      
$$- \frac{3 \sin{\left(3 \right)} \sin{\left(7 \right)}}{40} - \frac{7 \cos{\left(3 \right)} \cos{\left(7 \right)}}{40} + \frac{7}{40}$$
7/40 - 7*cos(3)*cos(7)/40 - 3*sin(3)*sin(7)/40
Numerical answer [src]
0.298659029061774
0.298659029061774
The graph
Integral of sin7xcos3x dx

    Use the examples entering the upper and lower limits of integration.