Mister Exam

Integral of sin5xcosx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |  sin(5*x)*cos(x) dx
 |                    
/                     
0                     
$$\int\limits_{0}^{1} \sin{\left(5 x \right)} \cos{\left(x \right)}\, dx$$
Detail solution
  1. Rewrite the integrand:

  2. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. There are multiple ways to do this integral.

        Method #1

        1. Let .

          Then let and substitute :

          1. The integral of is when :

          Now substitute back in:

        Method #2

        1. Rewrite the integrand:

        2. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of is when :

        Now substitute back in:

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        Now substitute back in:

      So, the result is:

    The result is:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                          2           6   
 |                               4      5*cos (x)   8*sin (x)
 | sin(5*x)*cos(x) dx = C - 5*sin (x) - --------- + ---------
 |                                          2           3    
/                                                            
$$-{{\cos \left(6\,x\right)}\over{12}}-{{\cos \left(4\,x\right) }\over{8}}$$
The graph
The answer [src]
5    5*cos(1)*cos(5)   sin(1)*sin(5)
-- - --------------- - -------------
24          24               24     
$${{5}\over{24}}-{{2\,\cos 6+3\,\cos 4}\over{24}}$$
=
=
5    5*cos(1)*cos(5)   sin(1)*sin(5)
-- - --------------- - -------------
24          24               24     
$$- \frac{5 \cos{\left(1 \right)} \cos{\left(5 \right)}}{24} - \frac{\sin{\left(1 \right)} \sin{\left(5 \right)}}{24} + \frac{5}{24}$$
Numerical answer [src]
0.210024595387088
0.210024595387088
The graph
Integral of sin5xcosx dx

    Use the examples entering the upper and lower limits of integration.