Mister Exam

Other calculators

Integral of sin5x*cos(x)*dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |  sin(5*x)*cos(x) dx
 |                    
/                     
0                     
$$\int\limits_{0}^{1} \sin{\left(5 x \right)} \cos{\left(x \right)}\, dx$$
Integral(sin(5*x)*cos(x), (x, 0, 1))
The graph
The answer [src]
5    5*cos(1)*cos(5)   sin(1)*sin(5)
-- - --------------- - -------------
24          24               24     
$$- \frac{5 \cos{\left(1 \right)} \cos{\left(5 \right)}}{24} - \frac{\sin{\left(1 \right)} \sin{\left(5 \right)}}{24} + \frac{5}{24}$$
=
=
5    5*cos(1)*cos(5)   sin(1)*sin(5)
-- - --------------- - -------------
24          24               24     
$$- \frac{5 \cos{\left(1 \right)} \cos{\left(5 \right)}}{24} - \frac{\sin{\left(1 \right)} \sin{\left(5 \right)}}{24} + \frac{5}{24}$$
5/24 - 5*cos(1)*cos(5)/24 - sin(1)*sin(5)/24
Numerical answer [src]
0.210024595387088
0.210024595387088

    Use the examples entering the upper and lower limits of integration.