Mister Exam

Other calculators

Integral of f(2x-1)(3x+4)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                           
  /                           
 |                            
 |  f*(2*x - 1)*(3*x + 4)*1 dx
 |                            
/                             
0                             
01f(2x1)(3x+4)1dx\int\limits_{0}^{1} f \left(2 x - 1\right) \left(3 x + 4\right) 1\, dx
Integral(f*(2*x - 1*1)*(3*x + 4)*1, (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    f(2x1)(3x+4)1dx=f(2x1)(3x+4)dx\int f \left(2 x - 1\right) \left(3 x + 4\right) 1\, dx = f \int \left(2 x - 1\right) \left(3 x + 4\right)\, dx

    1. Rewrite the integrand:

      (2x1)(3x+4)=6x2+5x4\left(2 x - 1\right) \left(3 x + 4\right) = 6 x^{2} + 5 x - 4

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        6x2dx=6x2dx\int 6 x^{2}\, dx = 6 \int x^{2}\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

        So, the result is: 2x32 x^{3}

      1. The integral of a constant times a function is the constant times the integral of the function:

        5xdx=5xdx\int 5 x\, dx = 5 \int x\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          xdx=x22\int x\, dx = \frac{x^{2}}{2}

        So, the result is: 5x22\frac{5 x^{2}}{2}

      1. The integral of a constant is the constant times the variable of integration:

        (4)dx=4x\int \left(-4\right)\, dx = - 4 x

      The result is: 2x3+5x224x2 x^{3} + \frac{5 x^{2}}{2} - 4 x

    So, the result is: f(2x3+5x224x)f \left(2 x^{3} + \frac{5 x^{2}}{2} - 4 x\right)

  2. Now simplify:

    fx(4x2+5x8)2\frac{f x \left(4 x^{2} + 5 x - 8\right)}{2}

  3. Add the constant of integration:

    fx(4x2+5x8)2+constant\frac{f x \left(4 x^{2} + 5 x - 8\right)}{2}+ \mathrm{constant}


The answer is:

fx(4x2+5x8)2+constant\frac{f x \left(4 x^{2} + 5 x - 8\right)}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                   /                 2\
 |                                    |          3   5*x |
 | f*(2*x - 1)*(3*x + 4)*1 dx = C + f*|-4*x + 2*x  + ----|
 |                                    \               2  /
/                                                         
f(4x3+5x28x)2{{f\,\left(4\,x^3+5\,x^2-8\,x\right)}\over{2}}
The answer [src]
f
-
2
f2{{f}\over{2}}
=
=
f
-
2
f2\frac{f}{2}

    Use the examples entering the upper and lower limits of integration.