Mister Exam

Other calculators


(sin4x+1)dx

Integral of (sin4x+1)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |  (sin(4*x) + 1) dx
 |                   
/                    
0                    
01(sin(4x)+1)dx\int\limits_{0}^{1} \left(\sin{\left(4 x \right)} + 1\right)\, dx
Integral(sin(4*x) + 1, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. Let u=4xu = 4 x.

      Then let du=4dxdu = 4 dx and substitute du4\frac{du}{4}:

      sin(u)4du\int \frac{\sin{\left(u \right)}}{4}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        sin(u)du=sin(u)du4\int \sin{\left(u \right)}\, du = \frac{\int \sin{\left(u \right)}\, du}{4}

        1. The integral of sine is negative cosine:

          sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

        So, the result is: cos(u)4- \frac{\cos{\left(u \right)}}{4}

      Now substitute uu back in:

      cos(4x)4- \frac{\cos{\left(4 x \right)}}{4}

    1. The integral of a constant is the constant times the variable of integration:

      1dx=x\int 1\, dx = x

    The result is: xcos(4x)4x - \frac{\cos{\left(4 x \right)}}{4}

  2. Add the constant of integration:

    xcos(4x)4+constantx - \frac{\cos{\left(4 x \right)}}{4}+ \mathrm{constant}


The answer is:

xcos(4x)4+constantx - \frac{\cos{\left(4 x \right)}}{4}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                    
 |                             cos(4*x)
 | (sin(4*x) + 1) dx = C + x - --------
 |                                4    
/                                      
(sin(4x)+1)dx=C+xcos(4x)4\int \left(\sin{\left(4 x \right)} + 1\right)\, dx = C + x - \frac{\cos{\left(4 x \right)}}{4}
The graph
0.001.000.100.200.300.400.500.600.700.800.902.5-2.5
The answer [src]
5   cos(4)
- - ------
4     4   
54cos(4)4\frac{5}{4} - \frac{\cos{\left(4 \right)}}{4}
=
=
5   cos(4)
- - ------
4     4   
54cos(4)4\frac{5}{4} - \frac{\cos{\left(4 \right)}}{4}
5/4 - cos(4)/4
Numerical answer [src]
1.4134109052159
1.4134109052159
The graph
Integral of (sin4x+1)dx dx

    Use the examples entering the upper and lower limits of integration.