Mister Exam

Integral of sin4x*dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  0            
  /            
 |             
 |  sin(4*x) dx
 |             
/              
pi             
--             
4              
π40sin(4x)dx\int\limits_{\frac{\pi}{4}}^{0} \sin{\left(4 x \right)}\, dx
Integral(sin(4*x), (x, pi/4, 0))
Detail solution
  1. Let u=4xu = 4 x.

    Then let du=4dxdu = 4 dx and substitute du4\frac{du}{4}:

    sin(u)4du\int \frac{\sin{\left(u \right)}}{4}\, du

    1. The integral of a constant times a function is the constant times the integral of the function:

      sin(u)du=sin(u)du4\int \sin{\left(u \right)}\, du = \frac{\int \sin{\left(u \right)}\, du}{4}

      1. The integral of sine is negative cosine:

        sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

      So, the result is: cos(u)4- \frac{\cos{\left(u \right)}}{4}

    Now substitute uu back in:

    cos(4x)4- \frac{\cos{\left(4 x \right)}}{4}

  2. Add the constant of integration:

    cos(4x)4+constant- \frac{\cos{\left(4 x \right)}}{4}+ \mathrm{constant}


The answer is:

cos(4x)4+constant- \frac{\cos{\left(4 x \right)}}{4}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                          
 |                   cos(4*x)
 | sin(4*x) dx = C - --------
 |                      4    
/                            
sin(4x)dx=Ccos(4x)4\int \sin{\left(4 x \right)}\, dx = C - \frac{\cos{\left(4 x \right)}}{4}
The graph
0.000.050.100.150.200.250.300.350.400.450.500.550.600.650.700.752-1
The answer [src]
-1/2
12- \frac{1}{2}
=
=
-1/2
12- \frac{1}{2}
-1/2
Numerical answer [src]
-0.5
-0.5

    Use the examples entering the upper and lower limits of integration.